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STUDY OF APURSUIT DIFFERENTIAL GAME PROBLEM

WITH APURSUER AND MANY EVADERS
'Abbas Ja'afaru Badakaya and °Aliyu Ibrahim Kiri

"*Department of Mathematical Sciences, Bayero University, Kano, Nigeria
E-mail addresses: ajbadakaya.mth@buk.edu.ng and badakaya@yahoo.com

Abstract
Abstract: This paper is concern with the study of a pursuit differential game with one pursuer and many
evaders in the space R". In the game, players move according to certain first-order differential
equations with integral constraints on control functions of the players. Pursuit is said to be completed
if the geometric position of the pursuer coincides with that of each of the evader for some finite times. A
theorem that provides sufficient conditions for completion of pursuit is formulated and proved.
Moreover, pursuer's admissible strategy that ensures completion of pursuit is constructed.

Keywords: Differential games; Pursuer; Evader; Integral constraints.

Introduction

There isasizable literature on pursuit differential
games with multiple players. A sample of
literature on this type of study is the collection of
works [1]-[18] and some references therein.
Most of these cited works are dedicated to
problems with simple motions differential game.
For example, in the works [1]-[6]; [8]-[10] and
[13]-[15] considered simple motion pursuit
differential games with a finite number of
pursuers and one evader. Problem with a finite
number of pursuers and many evaders are
investigated in [7]; [16] and [18]. The former
group of examples seem to be dominant in the
literature.

where it is reauired that

(7 9*(s)ds)"* <o, T3>0,

lim j'[: @*(s)ds = oo,
T—m0

Ivanov and Ledyaev in [12] investigated a simple
motion differential game of several players with
geometric constraints in the space R"

Ibragimov and Satimov [7] studied a simple
motion differential game of many pursuer and
many evaders on anonempty convex subset of R"
The result obtained was a sufficient condition for
completion of pursuit. Specifically, they
consider a pursuit problem in which motion of

tha nlaviarc ic Aacrrihad hv tha aniiatinne

{ii(t) = o(Ow(t), x0)=x’, i=12, ..,k
yi(t) = e®ui(t), yi(0) =y}, i=12,..,m,

(2)

This generalized many works such as [1]-[10]. [13]. [15]. [16] and [ 18]. However, this work leaves
a gap for the problems in which the function ¢(t) is not satisfying the conditions in (2). For
example, if @(t) = e~*,1 > 0, then the second condition in (2} is not satisfied.

This paper attempts to solve the pursuit differential game considered in [7] with h = 1 and a finite
number of evaders in the space R™. The function ¢@(t) is considered to be bounded instead. This

study set forth further reduces the gap left in [7].

2. Formulation of the problem and result

Let the motion of a pursuer P and Iinite number of evaders E;, { € = {1,2, ..., m}, be described

by the equations

B

x(t) = e(u(t), x(ty)=x"
vi(t) = @(O)vi(t), yi(to) =y, i €1,

(3)

1
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where x(t), x%, u(t), vi(t), ¥/, v;(t) € R™; u(t) = (u, (), uy(t), ..., u,(t)) and v;(t) =
(vi1 (L), v (L), ..., v (L)) are control parameters of the pursuer P and evader E; respectively
and () 1s scalar measurable function satisfying some conditions. Let t; be initial time of the
game and T to denote the time instant at the pursuer captures the last evader and is not fixed. This
nstant T is equal to +oo if some evaders are never captured.

Definition 2.1 A measurable function w(t) = (w (t), uz(t), ..., wu, (£)), ty < t < 0, satisfving the
inequality
i p y
f:.} Il u(s) I ds < p?, (4)
where p is a positive real number, is called an admissible control of the pursuer.

Definition 2.2 4 measurable function vi(t) = (Vi (), Uiz (L), .., Vin(L)), by = £ = 8, satisfving
the inequality

8
2 2
where g; is a positive number, is called an admissible control of the " evader.

Whenever the players™ admissible controls u(-) and v;(-) are chosen, the corresponding motions
of a pursuer and the i*" evader (solution of equations (3)) are given by

x() = (1 (6, X2 (8), s Xn (), X (8) = X (0) + [, @(upe(s)dls

(6)
Y1) = 0 (€, iz (), s Yin (D)), Yire(t) = y5ic(£) + J:J @(5)vi(s)ds.

Definition 2.3 A fimction U{x(), v1() oo U (0, (), 100 2 0y o ¥ (), Uz R™ % (R —

R™, for which the system

{x(t) = ‘P“)”(x()- L&} f)i Um{')rx('ji W (}r FZ(')- Ul J’"m('])i x(tn) = xn-
yi(t) = @(Ovi(t), yilto) =y, i €L,

has a unique absolutely continuous solution (x(t), vy (L), ..., ¥ (t)), for any admissible controls
vi(t),i €1ty =t < 6, of the evader is called a strategy of the pursuer. A strategy U(-) of the
pursuer is said to be admissible 1f every control it generates 15 admssible.

Definition 2.4 Pursuit is said to be completed in the game (3)-(5) from initial positions

{x% y2,¥2, ., v2), x0, v € R™, if there exists a strategy U(-) of the pursuer such that for all
admissible controls of the evaders v;(+), i € 1, the relations x(t;) = y;(t;) hold forall i € I,
where t; € [tg, T].

To elaborate on this definition, completion of pursuit means that the lone pursuer is to pursue the
i*" evader and catch it for the time t; and any other evader whose state coincides with that of the
it™" evader at the time t;. When the pursuer catches at least the i*™® evader at time t; then that
evader(s) is/are considered to be inactive or vanished. This allow the pursuer to move against the
j™ evader until catches it for some time t;. This is continued until all the evaders are exhausted.
In what will follow in the paper, the game described by (3)-(5) in which the function ¢(-) satisfies
the inequality 0 < a < |@(t)| < a forall t = t;, will be referred to as game G;.

Research Question: Find a condition for the completion of pursuit in the game G,.
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3. Results

In this section. main result of the research work 1s presented. To begin with, we introduce the
following notations:

Jil =+ and f = min{1, a}.

i=1 7l

Let t; € [t,,T] for all i €1, such that ty <t;, <t; <+ £ty =T. We define the instant at
||1"L[Jr'—1}‘x[\t1—13'||z
; (¥i—ai)?

number and is such that y; = gg; = pz,:—‘a. Observe that t; = t;_; whenever y;(t;_,) =

i=1 T

which the i™ evader is to be captured as t; = t;_, + , where y; 1s a positive

x(t;_y). In accordance with these definitions, we have the following Lemma:

Lemma 3.1 If p> YL, a; then for any x(t;_y) and y;(t;_) there exists a pursuer's control
U(-) to ensure the equality x(t;) = y;(t;) for i €1 in the game G, with that
1

(, WwePkds) <.

Proof. For t € [t;_;, t;). let the pursuer use the control

0 if yi(ti—1) = x(ti-1)

Ux(ti-)yi(ti-1), vi (1)) = {J"E{Ef-rl}_ffli—l} X
@{t)(ti=t_1) + Uf{t)' If yi(ti—1) # x[tf_lj.

(7)

For the case y;(t;_;) = x(t;_,), the pursuer has its desired goal, then according (7) the pursuer
remains static . In the other hand, if v;(t;_;) # x(t;_;), then the pursuer chases the evader E;
according to (7) until it achieves the equality x(t;) = y;(t;). That s,

x(t) = x(ti) + [;' e(s)u(s)ds

L :"'r":rl'— ]_x':rl'— ]
= x(ti) + f | (B 4 g (5)uy(s) ) ds

= x(t-y) + HEZEEL (Y ds 4 [T p(s)vi(s)ds

L e ¥

i
= x(ti-1) + yu(ti-1) = x(6) + [ @ (vi(s)ds = yi(L).
The control of the pursuer satisfies the inequality

(5 nwe)zds) < v ®)

Indeed, using the Minkowski inequality, definition of t; and the fact that y; = fo; > o; (since
g =1 )one gets
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([ Nues)Pds)” = (If;’_

2 z
ds)
< (f, (Bseeesit as) + (f Il ds)

F _I l

< (s, (Pmtsatl)ac) s (12, oI s}
1 ; 1
< e (L, as) + (£, oIl ds)

= Wyiltiq) -2t )l | o
- Byttt g

Yi—& oy
= T[ + 7= Ve
The proof of the case y;(t;_;) = x(t;_;) is trivial. This completes the proof of the lemma.

Yilti_q)=x(t;_4)
plE)iti—ti—)

+vi(5}‘

B | =

Now the main result of the research work is presented below.

:rE

Theorem 3.1 1f p = };-; oy, then the pursuit can be completed in the game G,.

FProof. Define the strategy of the pursuer as follows:

UJ-TIJ.H}{L-}r b=t <ty

U]-r,.rz}{t}r =t <t,,

U)o y1() y2(s s Y ) va s v () = (9)

Urrm_|.am}(t)- En—1 = U< tp,

where

0, Uf ¥i(ti-q) = x(ti—1),

Uy S(E) = Syitti =2t 1) e
[tiog.ti) Filli—a)=ti-q) . :
@(EMLi—tiq) + U[{E]l_. EJrc j"rt(EIul} ¥ x{EI-[}F

forall i €1 and v[(] is the admissible control of i*" evader. Using the result of the Lemma 3.1
and the inequality ¥, o < (E™, ;)% we show the admissibility of this strategy as follows:
142
."J. m: £ 232
fo NUGIPds = T2, [ [1U(s)I] ds = [(Ll._] llu@Il) ‘
E’" Irl* =iz [y }ﬁ = PAEE, (o))
I(EE 1 [ eJ )ZEF':' £

{}LI"I (1)

If the pursuer uses the strategy (9) then according to Lemma 3.1, the following equations

x(t) = vi(ty), x(tz) = ¥2(t3), v, X(tm) = Vm(tym), hold. By this strategy , the pursuer is
expected to complete pursuit for lhc time t,,. This proves the theorem.
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Apursuit differential games with one pursuer and one after the other. This study affirmed that the
R" where integral constraint on each control predator can accomplish its mission provided
function of the player is considered. Sufficient ~ that the condition stated in the theorem is
condition for the single pursuer to complete  satisfied.

pursuit in finite time, is obtained. This condition

requires that the energy of the pursuer to be Finding optimal pursuit time for the problem
bigger than the sum of the energies of the  studied in this paper can be a potential further
evaders. The real life situational example of this, research. Moreover, the problem can be studied
is a problem of single predator that runs after inthe Hilbertspace [,.

multiple preys with mission to kill all the preys
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ON THE FLOW OF RADIATIVE POROUS MEDIA OF AN
ELECTRICALLY CONDUCTING FLUID (MHD) IN THE
PRESENCE OF SLIP AND CONVECTIVE BOUNDARY

CONDITIONS
Bashiru Abdullahi’, 1sah Bala Yabo ?, Ibrahim Sa'idu®

' Department of Mathematics and Statistics Abdu Gusau Polytechnic, Talata Mafara.
? Department of Mathematics Usmanu Danfodiyo University, Sokoto.
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Abstract

The influence of slip and convective boundary conditions in the presence of thermal radiation through parallel
porous plates was deliberated analytically and numerical. A non-linear Roseland approximation was used to
describe the radiative heat flux in the energy equation where the magnetic field is combined in the momentum
equation. The solution of the governing differential equation that described the flow was solved using the
Perturbation method in order to obtain the analytical solution which was used to confirm the validity of the
numerical solution. The finite difference method was employed to find the numerical solution to the governing
equations. Equations that represent the velocity, temperature, skin friction, and Nusselt number are obtained
and their behaviors are discussed with help of line graphs. The results obtained show that suction/injection, slip
velocity and convective boundary conditions play important role in changing the behavior of velocity,
temperature, skin friction and Nusselt number.

Keywords: Convective boundary condition, Porous media, Magnetohydrodynamic (MHD), Slip parameter,

Thermal radiation.

Introduction

The study of fluid flow through porous walls is a
very significant branch of fluid mechanics. The
impact of suction and or injection is one of the
renowned present-day topics of research.
However, in the plan of updraft oil retrieval and
radial diffusers, suction is used. Suction is also
functional to chemical procedures to confiscate
reactants and injection is useful in adding
reactants, cool the surface, stop corrosion or
scaling and decrease the drag. Considering the
application MHD flow through pours medium,
in the areas of engineering technology, in recent
time many authors researched the related topic.
Uwanta and Hamza (2014) conducted research
on the influence of porous medium on Unsteady
Hydromagnetic convective flow of Reactive
viscous fluid between vertical porous plates with
thermal diffusion. In the findings it was revealed
that the establishment of the least flow takes
place close the wall where suction happens,
while the extreme flow forms near the wall
where the injection occurs. Feng et al. (2015)
analyzed the consequence of drag Force and
fluid flow within porous channels on a
chemically reactive MHD flow and found that
the channel hotness declined for fluid suction

and increasing Prandtl number but both enlarged
the rate of heat transfer. Other researchers that
talked about the effect of suction and injection
include: (Jha et al. 2016, Goyal and Rathore
2017, Jha et al.(2018), Sasikumar and
Govindorajan 2018, Hamza 2019, Ighoroje et al.
2019, Jitender et al. 2019, Rehman et al. 2019,
Upreti etal. 2020)

Fluid slip boundary condition arises in several
practices such as in Nano-channels and it is used
where a thin film of light oil is attached to the
moving channels or when the surface is covered
with special coatings such as a thick monolayer
of hydrophobic octadecyl trichlorosilane. Slip
boundary conditions are also applied in the
polishing of artificial heart valves and internal
cavities, fluid motion within the human body,
etc. Many researchers, considering the
application of slip velocity in science and
technology researched its effect on MHD
(Venkateswarlu et al. 2016, Gnaneswa 2017,
Mohamed and Ahmed 2018, Ellahi et al. 2018,
Manjula and Jayalakshmi 2018, Nandal and
Kumari 2019, Mohammad et al. 2020)

Thermal radiation continues have a great
upshot on MHD flow and heat transfer
problems. For instance, at high functioning
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temperatures, the radiation effect can be quite
significant. Dulal and Babulal (2013) stated
that many processes in manufacturing areas
such as Atomic power plants, and the various
impulsion devices for aircraft, missiles, and
space vehicles, thermal radiation consequence
becomes very imperative. Considering the
sway of thermal radiation on MHD several
authors researched on the subject matter (Misra
and Sinha 2013, Kalidas 2014, Mohammad et
al. 2014, Khoetal.2018, Isahetal. 2018)
Boundary conditions with convective behavior
are useful in many manufacturing and industrial

Mathematical Analysis

processes (transpiration, cooling process, and
material drying). Therefore, numerous scholars
have revealed their concern in finding solutions
of problems on MHD fluids flow due to
convective boundary conditions (Wubshet 2016,
Sitietal. 2017, Yahayaetal. 2018)

Motivated by the significance of slip and
convective boundary conditions on the flow of
MHD in science and engineering, the present
work is aimed at extending the work of Isah et
al. (2018) to incorporate slip and convective
boundary conditions and to investigate their
influences.

The current study investigate free convective heat transfer flow of steady and unsteady
laminar and fully developed on MHD fluids. A uniform transverse magnetizing field of
strength By, is applied in the existence of heat change of strength g,,, which is gripped by the
wall and moved to the fluid as presented in Figure 1. At constant temperature T, before the
start-up, both the fluid and walls are assumed to be at rest (¢’ < 0). At start-up the
temperature of the wall positioned at y"' = 0 is —#£ g—j—; - hy [T, — T'(0,t)] and the other wall at

a distance H from it is constant (t" > 0). The stream wise coordinate is denoted by x’ taken
upright upward direction and that normal to it is denoted by y'. The axial (x-direction)
velocity depends only on the transverse coordinate, y'. The governing equations for the
present physical situation (using the Bossiness’s approximation), in the dimensional form are:

, I
—&"ai, = hy[T; = T'(0,8)] | — [
dy y'=0 g I
SUCTION I I - 5
INJECTION
, 611’_1 |
u = ayBOI l
u' =0
| |
I
ui’ —_ O I
| I
1 |

k<—-\.
—s
—
—>
—
—
\<-\
|
)

Figure 1: Geometry of the problem for the porous channel




Abacus (Mathematics Science Series)
\ol. 49, No 3, September. 2022

M.A.N. ABACUS

au' du' r]' u! Boiu'
ﬁl: V[Fa r= +JB(T1_TG}_

(1)

ar! 4+ 2T a7 [.—?ET' R

ar 0y~ %layz T kay'

(2)

The required initial and boundary conditions to be satisfied are:

t'<0: for 0<y' <H, u' =0: T' =T
¥ du * ar | - h] [Tl i T;([}‘ t}], H-t },r'l - I-J

ay ’ d_}r; _V'=U
uf =0, TleTatyheH
(3)

To find the non-dimensional form of the above dimensional equations, the following
dimensionless variables are introduced:

_ty Yy . F _T'—=Ty _ hH _[gﬁHz(Tl_To)]
t__J y—_; Pr__ ’ _—JBil—_JG‘r— ]
H2 H a TI_TU ’ﬁ.’z VU
g o THHE o W e I L B Y
M- = — ,u—U,S—v,y—H,u—y 3y (4)

The radiation heat flux (qy)term in the problem is simplified by using the Roseland

approximation
-400T'*
U = Skay ()

Using Equations (4) and (5) in equations (1) and (2) subject to the new boundary conditions,
we acquire the following non-dimensional equations for velocity and temperature equations

respectively

ST = y+Gr9 M2y (6)

P(§f+§9) [1+—(CT+9)] +4R[CT+6]( )

(7)

With fresh initial and boundary conditions:

att<0, 0<y<1: u=0; 0=0

ou a6
=0u=y—,—— = Bu|1 -6/,

y=1u=0 6=0
(8)
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Analytical Solution

Analytical results are very vital in authenticating the solution of time-dependent equations.
Equations (6) and (7) are highly non-linear such that analytical solution can’t be obtained.
Hence one can obtain its steady-state solution using the perturbation method by putting

e adg . Y .
o 0. and these equations become:
di d?u 2
d—y-—d}r2+{}'rﬂ—M l} (M
9 _[1 48 3]428 -+ 012 (22)
RST = [1+5(Cr + 67|53 +4RICr + 61 () (10)

With fresh imitial and boundary conditions:

t<0, 0<sy=<1: u=0; 8=0

£>0, y=0 u=y%, -4 —p.[1-4),

dy’ n‘.y},:n
y=Lu=0 8=10
(1)

The solution to the dimensionless set of ordinary differential equations in (9) and (10) can be
obtained by representing velocity and temperature as follows:

u(y) = uy(y) + Ruy; (y) + -+ + X R"u,
(12)

6(y) = 6,(y) + RO, (y) + -+ X R"6,
(13)

Putting equations (12) and (13) into equations (9) and (10) respectively and equating like
powers of R, one obtains the momentum and energy equations as

u(y) = aze*? + a,e*? + as + age™ Y + R(G1e*3Y + G,e* + G5 + G +
Gsyer + Gee®r™ + G, + Gy e*r) (14)

0(y) = a; + aeSY
+R(dy + d,efrSY + dyyePrSY + d,e?PrSY + dge3FrsY + dg etfrsY) (15)
At a steady-state the skin frictions and Nusselt number are as follows:

Skin friction 7 4

du
Tg = 5 = d3X4 + azx, + aGPTS + R81x3 + R€2x4 + szPTS + ng + 2Rk4Pr5 +
y=0
3RksP,S + 4RkgP,S (16)
Ty = Z—; = azx;e* + azx,e*2 + agP.SefrS + Reyxze*3 + Re,x,e*t + Rk,P.SefrS +
y=1
Rk3P.SePrS + RksePrS + 2Rk, P.Se?PS + 3RksP.Se3PrS + 4RkyP.Se*Prs (17)

10



ﬁ Abacus (Mathematics Science Series)
\ol. 49, No 3, September. 2022

M.A.N. ABACUS

Nusselt numberNu, 4

Nu, = 3—3~| = a,P.S + Rd,P.S + Rds + 2Rd,P.S + 3RdsP.S + 4Rd.P.S (18)
y=0

Nu, = %| R a,P.SerS + Rd,P.Se"rS + Rd;P.Se"rS + Rd;e"rS + 2Rd,P.Se?"S +
y:

3RdsP.Se3"rS + 4RdP.S e*'rs (19)

Numerical solution

The time dependent solution of (6) and (7) are found using the implicit finite difference

method as:
j+1 i j j J+1 L jH1 1 . .
o ) Sui+1_ui—1 L L M2y! ]
— M*u; + Gré:;
At t 27y (Ay)?2 i + i
(20)
J+1 I J ] j+1 J1+1 1+1 I J
P 6 -6 +59£—1_9i+1 =z i1 —20] +0;,, +z i 1=0i41
T oAt 20y 1 (Ay)? 2 20y
(21)
Subject to the new boundary conditions:
Wt [l
i—1 20y
s _385—?"'49{“_85:11 = B [1 _ 91] fOT' alli =0
2Ay - i i
Jo_ J (.
uy =0,68;, =0,foralli=M
(22)

Further simplification (20) and (21) respectively give:

The velocity equation:

But' + Bl 4B ultt = rul—rul + (1 — AtMP)u! + AtGro)]
(23)

Temperature equation:

AOT + A0]T + A0/ = Pro] + Prr 6], —Prr 6]  +z,m5(6], - 6.,,) (24)

i+1

Due to convectivity of the boundary of the momentum and energy equations at y = 0, from
equation (22) we have

j+1 —3uff: +auf o

1 =Y T (25)

u
j+1 _ (4=2AyBj1) pj+1 1 j+1 | 2
0y —Tngi "§9i+1 +§A Bix
(26)

11
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_ fa-2ay8)
3

J ] 1 | 2
Hiv'l Hi. _59:1-1 +;ﬂyﬁﬂ {2?}

Putting i = 1 into (25), (26) and (27) substituting into (23) and (24) and simplify, then the velocity
and temperature equation respectively become:
)uf -

o

4

Bl
3

j+1 _ 24y - z
3 3 2y LY + 1—AtM

(3B, —%BI +B.)ul*" + (B,

(Gri+m)ul + atGro] (28)

(—': : iy Ac) gt + (Ar —~ T’) 6] + S AAyBy = (P?‘ - %Ffﬁ) CH
o = P | 2

+2Prry 0 — 2Prry AyBi+zors (o) — 20] + 2ayB, (29)

Result validation

Numerical solution efficiency is authenticated by comparing with the steady-state solution
obtained by the regular perturbation method. The perfect agreement was found between the
steady-state and unsteady-state solution at large values of time t, It was also found that
steady-state for both velocity and temperature of water and air were reached at the same
magnitude but at a different time sce the figure 2 below:

.14 035
Pr =11 ———t =04 e -t =l
i ) iy sy, 1= 03 | = I"' Q;h (L) Qe ——=1= 08
/;I,..----..,___‘w, ===gleaily siale numerical s k* ===glealy stale mummerical
;/:d %, 0 sieady state nalytical Y }".E-, steady state analyrical
i1 o N T s w N
I % LY
Fid R \\* ) S
= i - - WX L ~ g
2ot & #7 . 3 { & g2 My
5 ' .5-1' # “a, \\:\. B b Q\..
z ' e . \:\ E s ‘%{
T ol S T A 1 218! Ma, Wy
- r (N "n-,'I E b
.n'; \\ \'Q H 2 \ ﬁ‘
.y ! 1 aay o
I | 5 \"‘
L \\.\"\.
e 0.0 s
iy
%
W
L = ' L]
] 0.2 .4 6 0oLE ] 0.z LB L& ol 1
distamee (v} divtzmee (v}

Figure 2: Upshot of time on the steady-state velocity and temperature profiles (4 = 0.3, 5 = 0.03)

Results and discussion

The present work, studies the steady/unsteady state natural convection heat transfer flow
through vertical porous plates in the presence of thermal radiation. under the influence of a
uniform magnetic field subject to slip and convective boundary conditions. The systemn of
governing equations (6) and (7) with the boundary conditions (8) is solved using the
perturbation series method to obtain the analytical solution, the whereas mmplicit finite
difference method was used to obtain the numerical solution. The impact of the flow
governing parameters .e. magnetic parameter (M ), radiation parameter (R) , temperature
difference parameter {( Cy), Prandtl number (Pr), Biot numbers (B;;), suction/injection
parameter (S), slip parameter (4) and Grashof number (Gr) on the pertinent parameters on
velocity u(y,t), temperature 8(y,t), skin friction 75, and Nusselt number Nug ., have
been analyzed and deliberated using line graph as shown from figure 2 to figure 28. Pr =
0.71 and 7.0, which physically represent air and water respectively were used, while all
other parameters M=/, B= (0.000f, Cy = 0.01, B;; = 0.5,5 = 0.1 and Gr = 5.0 are used
for the analysis unless otherwise stated.

e
12
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Figure 5: Upshot of R on u(y, t)

13



ﬁ Abacus (Mathematics Science Series)
\ol. 49, No 3, September. 2022

M.A.N. ABACUS

.35
——=f =2

(b) g ——=g=03 |

B,.S:—

wvelodiy (o)
=
s
n

n""'"""“-—-r.....-..,______:::::::::E=;.'
H 1 1 1 ﬂ.H L 1 1 1
0 0.2 [ K] e 0y 1 ] 02 0.4 0.6 5] 1
iistance (¥} dstance (v}
Figure 6: Upshot of § on u(y, t)
BiY- = - k14 T
[ S—— ===i =01 Y e e O 8
[i’l]’ #fr'. ""-.._“ Pr=0.71 . {h} -""T--‘-"“u Pr mm=) =2
[ L
1 S (i ~"-.. ===i=0J3 oo -~ | *a ===r=03
f/ "' -...“ \\ ’f aEE— -\‘
-
f o *u e bl - | Mg
By o p—— NNy v - Tah
L - o %% I om—_ "
- - My . I
- [ - f
5 4 ’i '\\‘\ !.DIIH-;-I' - -\\'\\\\\
) 4 ¢ LY Er I ,"’ W A
Fons ¢ £ 4 W
3 .rJ T *" k- \:\
= i e Y o
"r ’ \‘\k
.
f aef Y
LY
%%,
oz aa3h .,
-
L
i - Il 1 L
] ar 04 .6 1] .2 n4 L& ng 1
distamee (¥) distance (V)

Figure 7: Upshot ofd on u(y, t)

Figures 3 to 7 show the consequence of dimensionless control flow parameters on u(y, t).
The impact of B;; on u(y,t) for air and water is discussed in Figure 3a and b. velocity
decreases with decreasing By;. It also shows that, as B;; approaches zero the velocity also
diminishes. Figure 4a and b illustrate the upshot of M on u(y, t). It indicates that, for both air
and water the velocity decrease with increasing M. This conclusion agrees with the fact that,
the magnetizing field exerts retarding force on the free convective fluids. Figures 5a and b
illustrate the outcome of R on u(y, t). It displays that velocity enhances with increasing R.
Figures 6a and b demonstrate the influence of S on u(y, t). The velocity of the fluid slows up
due to suction while it improved due to injection. The physical cause for such a manner is
that while stronger blowing is distributed, the heated fluid is pushed further from the wall
where the buoyancy forces can turn to accelerate the flow with less impact on the viscosity.
This effect acts to increase the shear by growing the maximum velocity within the boundary
layer. Equal attitude operates but in opposite direction in the case of suction. It is also
noticed that, in the case of suction, velocity of the fluid travels away from the channel center
line towards the plate and, in case of injection, the maximum velocities are lifted towards the
right porous plate. Figure 7 shows the influence of A on u(y,t). It is observed that velocity
enhances with increasing A while other controlling parameters assume arbitrary values.
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Figure 10: influence of Son 6(y, t)
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Figures 8 to 10 depict the sway of pertinent parameters on 6(y,t). Figures 8a and b
demonstrate the consequence of R on 8(y,t) . It shows that temperature enhances with the
rise in R while other controlling parameters assumed arbitrary values. Figure 9a and b
demonstrates the effect of B;; on 6(y,t). It is observed from the figure that temperature
decreases with decreasing B;; and as B;; approaches zero, the left wall is insulated. Figure
10a and b illustrate the influence of S on 6(y, t). It is observed that temperature declines due
to suction but upsurges due to injection. In case of suction, the fluid at ambient situation is
taken closer to the surface and condenses the thermal boundary layer thickness. The same
attitude works but in opposite direction in case of injection.

Skin friction
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Figure 13: effect of S and A on 7y 1 (Pr=0.71,t=0.4)
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Figure 14: effect of S and A on 744 (Pr=7.0, t =4.0)
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Figure 15: effect of R and Bj; on 7y, (Pr=0.71,t=0.4, S =0.02)
Figures 11 to 15 demonstrates the influence of pertinent parameters on 7y4. Figures 11a and b
illustrate the upshot of time and Cy on 744 . Skin friction increases with increasing time and Cr and
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attains steady state after large value of time at both walls. Figures 12a and b show the influence of Gr
and Bj; on 7g4. It is obseved that 7y decline with growing Gr 7, enhances with increasing Gr. It is
also obseverved that increase in B;; at letf wall leads to decline in 7y; while increase in B;; at right
wall leads to upsurge in 7,. Figures 13 and 14 depict the effect of S and A on 7, for air and water
respectively. It is observed from the figures that 7, ; upsurges with growing S. It is also witnessed
that, at A > 0.3 the skin friction of (Pr = 7.0) changes its state and starts declining along the flow.
Whereas 74, drops with growing A at both walls. Figures 15a and b describe the consequence of R
on Ty, . It is observed that, 7, ; improve with growing R at both left and right walls.

Nusselt number
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Figure 17: Sway of t and Cr on Nuy , (Pr=7.0)
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Figures 16 to 19 describe the influence of controlling parameters on Nug 4. Figures 16 and
17 illustrate the sway of t and Cr on Nug . It is observed that, at y = 00 Nug drops with
growing t and Cr and attains steady state for large value of time while other controlling
parameters assume fixed values; whereas Nu; enhances with increasing t and Cp at the
right wall (y = 1) and also attains steady state. Figure 18a and b shows the impact of Pr
and B;; on Nug; for both air and water. It i1s observed that, at left wall (y = 0), increase in
Pr leads to increase in Nuy but Nu; decline when Pr upsurges; whereas increase in By
leads to increase in Nuy ; . Figures 19a and b demonstrate the influence of R on Nug . It is
noticed that Nu, decline with increasing R at left wall, but Nu, .improves with growing R

at right wall.
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Conclusion

The Steady/unsteady heat transfers flow of viscous, non-compressible, and electrically
conduction fluid (MHD) flow through wvertical parallel porous walls due to convective
boundary conditions in the presence of slip velocity has been studied. The upshot of non-
dimensional controlling parameters on velocity u(y, t), temperature 8(y, t), skin friction 7 4
and, Nusselt number Nu,, were discovered and reported using a line graph. The finding
discovered that:
1. velocity and temperature improve with growing time and attain a steady state for
large value of t

il. upturn in B;; ,4, and R boosts the velocity

iil. Rise in R, Cy and B;; enriches temperature

iv. velocity and temperature decrease with increasing S and M

V. Increase in R, Gr and C; enhances skin friction

Vi. Skin friction decreases with increasing Gr, and B;; at convected wall (y=0) but
increases at non-convected wall (y=1).

vii.  Skin friction increases with R, Cr and S but declines with increasing M and A at
both walls.

viii.  Nusselt number upsurge with growing time and Pr at left wall (y = 0) while drops
with increasing time and Pr at right wall (y = 1)

ix. Increase in R, and Cr lead to decrease in heat transfer at left wall while increase
at right wall
X. Increase in Biot number leads to increase in heat transfer at both walls
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Abstract

The paper examined the dvnamic analysis of a damped beam resting on a uniform foundation
subjected to distributed moving Load. The governing equation of motion of the beam was
transformed into a coupled ordinary differential equations using separation of variables
technique. The analvtic solution valid for a simply supported boundary condition was
oblained using a special form of convolution integral known as Duhamel’s integral. The
effect of damping on the displacement of the beam was investigated for when damping ratio €
< I, $= I and €>1 at various values of dimensionaless time . It is found that the amplitude
of the displacement of the beam is maximum for absolute values of deflection when the
damping values are zero for damping ratio ¢ < |. The deflection curve attains maximum
amplitude at dimensionless time £ = 10, which implies that the greatest amplitude of the
beam displacement occurred at the middle-span of the structure. Finally, it was evidently
observed that as the damping values are increased for damping ratio €1, the amplitude
displacement of the vibrating beam decreases. This analysis may be used for validation of

structural dvinamical svstem in Civil Engineering most especially in Bridge Engineering.

Key Words: Damping Response, Pasternak Foundation, Moving Load

Introduction

The dynamic response of structures subjected to
moving Load is an interesting study area in
structural dynamic which has its application in
several fields such as Applied Mathematics,
Engineering and Applied Physics. A large
number of studies have been devoted by many
researchers, to this subject matter for example
FrybaL. (1972) worked on the vibration of solids
and structures under moving Load, Gbadeyan
JA. and Oni S.T, (1995) investigated the
dynamic behaviours of beams and rectangular
plates under moving Loads and in 2007,
Gbadeyan J.A and Dada M.S. studied the effect
of linearly varying distributed moving Loads on
Beam. None of the aforementioned researcher
above incorporated damping mechanism into
their mathematical models. Also in all these
studies, a number of foundation models having
various degree of sophistication have been used
to capture the complex behaviour of the soil. The
simplest model for the soil is the one-parameter
Winkler model. In this model, the foundation

23

reaction is assumed to be proportional to the
vertical displacement of the foundation at the
same pointand consequently. The Winkler model
does not accurately represent the characteristics
of practical foundation soils and the predictions
as observed in Lev Khazanovich (2003) exhibit
discrepancies. One of the most important
deficiencies of Winkler model is that it assumes
no interaction between the adjacent springs and
thus neglects the vertical shearing stress that
occurs within subgrade materials. In addition, a
displacement discontinuity appears between the
loaded and the unloaded part of the foundation
surface but, in reality, the soil surface does not
show any discontinuity. In order to address the
deficiencies of Winkler foundation model, a
more realistic elastic foundation model, Bi-
parametric, known as Pasternak foundation
model, which considers the continuity of the
surface displacement beyond the region of the
load is considered in this study.

Furthermore, it is noted that, in most of the
investigations available in literature, the problem
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of assessing the dynamic behaviour of structural ~ over the entire length of the structural member
members carrying moving loads has been  they traverse. This paper attempts to discuss the
restricted to the case in which the moving loads  vibration analysis of damped structure resting on
are simplified as moving concentrated forces.  Pasternak foundation under the influence of a
However, in practice, it is well known that loads  distributed moving load.

are actually distributed over a small segment or

Formulation of the Problem

We consider a distributed load advancing uniformly on a beam with constant velocity U. The
load 1s assumed to strike the beam at time t = () and travels across it as shown below.

Flx,r)

ey

Beam

2\

—_—

|

. The beam characteristics are described by Euler-Bernoulli equation.

{>_
|
|

«— £+

The Ihllm'-.'|ing were assumed from the analysis;

b

The load moves at constant velocity and keeps in contact with the beam at all
fimes.

3. The transverse displacement response ¥ (x.¢) is a product of position and
time.

Based on the above descriptions and assumptions, the problem of interest is described to be a
partial differential equation of the form:

‘_[x (x.)]+ Ny (e, 0)+ No(xat) + KV (x, )= GON, (v.0) = F (x,1)
cx “ }
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where
N (x,t)=El {1{ i i(”}+ a, Fﬁ Hi” J is the basis of moment-curvature of the system
\ Ox° dx ot
N, (x,¢ }=m{_,l.}f-” i:](r x .r]_l 15 the force due to acceleration of the beam,
L&
3 V(x,1)

N.(x,t)= C(x) is the force due to damping effect,

O

the expression K[""—}V{I‘ .r]—-G'{x}.-"'."Jf(,r,.r] represents the foundations on which the structure
8% ¥lx, t)

ax

is resting on and N,(x,1)= represents the differential form of the displacement

Where F{.\'J} is the applied moving Load. The symbols used in the equation (1) are defined
as follows.

E I(x) is the flexural rigidity of the beam

E" is the modulus of elasticity

[ is the cross moment of inertia

C s the damping coefficient

@ is the stiffness proportionality factor define for Rayleigh damping

V(x,t) is the displacement of the beam at point x and time ¢, measure from the equilibrium
position when unloaded.

t is the time
X is the axial co-ordinate
m is the constant mass per unit length of the beam

The following are the given boundary and nitial conditions respectively

d V(x, 0)
I ot

(0,0 =V(L.)=V (Lt)=0  and V(x.t): =0

Solution Procedure

The governing equation (1) 1s reduced to second order differential equation by separation of
variable techniques as follows.

We set the distributed parameters such as £/ (x),m(x).C(x). K(x) and G(x)
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to constant £/, m, C. K and G respectively. Then we assumed the solution of the form

=3 X, (x)7,(¢) (2)

The simplification of equation (1) after substitution of equation (2) yields

Tolt)+2m,& ]T"rf(r}+ N TJ._(I}=

A T : 2 L i PO —|1|
[ Mg j: X (x I—EZ T{F}L X, (x)X (x ) + T,,{r]‘[” X, (x)X ;.'{-’l]f‘h |}

m, *© m

| tr 1 2u i:".a{,r}j:: X)X, (x)dx J|J

%H[_r—{’ E}J HLJ_—{J‘-‘_E]J&JI 5

The vibrating configuration for simply supported system is introduced into equation (3),
hence the normalise deflection curves X, (x) is given as

X.lx }— |2 ‘:‘n“l;lll (4)

n= 1,2,3 J
Substitution of eq. (4) into equation (3) and further simplification gives

- . . Iz Mo ’_E ; 24
To(t)+ 20, £ T+ 02 T ()= — |2 ME2L o KTIC o K12 2M

Vi M KTl L 2L LM
- 2 [S.r'ﬁ nf (nr— K}C{J.‘i%{ﬂ = K]J —T
z ‘{}t"(f} nll(.ir—f{'] A

L . 11 ) I_I_-‘ _
| L r[{u-r-ﬁ.’]["”” I (n+ K )Cos EL[JHJR,}JJ

P | ORI | PO, |
2”” r”“ }Z LT{F rl{”_K}Sm L (n— K )Cos oL (n—K) |=_
M L) ‘" L sm”5m+KkmjiH—h|
| H{H+ L 2L |J-
T v Thsy oons ]
) M!“ﬂt | r|{n+fi T [JETR}S::IE {n+ﬂ} |F
L .|

)

[1 N £
'i'mf{u— K )Sin —I:r.l K { 5 ]]

The solution of the equation above subjected to the imitial conditions is given by the
Duhamel’s integral as:

‘l M(n-K)
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:—_[ r]lmq:-[ /M t—1)sinW (1 —r}]dr

Where r 1s the time at which the effect of the load 1s being considered on the structure, @ 1s
the natural angular frequency of undamped system , @, free-vibration of a damped system .
and £ 18 the damping ratio. Also

p,(r)= H[EDSJ cos §]
n

— (RF sin X', +2sin X, + 2sin X', —sin X, —sin X,
g Z&"{ n{n—ﬁ:l [ ; 7 : ]

- ORF —E sinX, +simX, —sinX, —sinX,
g Z Rk nln— k) '[ﬁ : ) ]
2sin X, +2sin X, + 2sin X, +sin X6
) Top Y N |
= ,SJL n{u—k} —2sin X, —2sin X, |

~ (ORF A, +sin X, =sin X, -sin X,
J Z 8k* u{n— ] [~ ' ]

cosY, +cosY, +cos¥, +cosY, |

!
bk Z 4K’ n{u—i}r[

—cos¥; —cos¥, —cos ¥, —cost, |

I',[25sin p, + 2sin p, + 2sin p, —sin p, —sin p, —sin p|

—QR.F'Z Bk n{.rr-l .ﬁ.}

1
—0ORF - [.|cos p, +cos p. —cos p. —COS
G ; Y [cos p, + cos p, —cos p, —cos p]

i 1
— ORF > I'y[cos p, +cos p, —cos ps —cos p]
K=1 8k~ n(rs—t—;l

| (cosZ +cosZ,+cosZ, +cosZ, |

-ORF )y ————I,
< z Bk f;rl[n—k} '

e |—cosZ;—cosZ,—cos L, —cosZ |
[sinZ, +sinZ,+sinZ,+sinZ, |

= sl _ : .
= ; 8k n(n—ik) Yl —sin Z,—sinZ, —sinZ, —sin ZJJ

[cos X, —2cos X, +2c0s X, —cos X, |
—ORF Z
4k’ n n—r{] +cos X, —cos X, |
= (}RFZ : I, [sin X, +sin X, +sin X, —sin X, +sin X, ]

Ric>nln—k)
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+QRFZ mr]4|:

cos X, —2cos X, +2cos X, —cos X |
+cos X, —cos X i
I

—QORF 1 ———— I |sin X, +sin X, +2sin X, —sin X, +sin X
Q ; 4;(2??(”_;() E,.[ 1 2 4 5 3]
= 1 [sin¥ —sinY, +sinY, —sinY—|
+QRFZ ¥ i i ’
o 4k” n(n k) | +sinY, —sin¥;+sin ¥, |
B | [2cos ¥, —cos ¥, +cos ¥, —cos ¥, |
+QRFY’ TR p—y Gl % "8 ’ |
& 4k’n(n—k) | —cosY, +cosY, |
x [ cos p, —cos p, +cos p, —cos
ORFY — L ;?_ ,51 P Pe|
&~ 4i’n(n-k) | —COS p, + o8 p; i
= ] . . . .
+ QRF [,/sm p,—sin p, +smn p, —sin
0 ; T ,-"() n[ P o) P Ps]
2 CcoS p, —2¢08 p,+2C0S p, —COS P
ORFY — 1 r, |72 2 Ps Pe|
&~ 4k’n(n—k) *°| —cos p, +cos p, i

+QRFZ'| ml}[sm p,—sin p, + 2sin p, —sin p, —sin pg] “

Hence the analytical solution for the displacement of the structure is evaluated to be of the
form

2 . | .
V(x,t): \/;sm%x ;L pn(r)exp[—g’(o”(r—r)sm w, (r—r)] dr (6)

n
Numerical Calculation and Graphical Results

To illustrate the analysis in this paper numerically and graphically, a program was coded in
MATLAB language which was used to implement the scheme in equation (6). The effects of
the individual case of the damping ratio (¢ <1,< =1 and € >1) on the dynamic response of
the beam are discussed. Various values of the amplitude of the deflection V(x,f) of the beam
for various values of dimensionless time 7 with a fixed value of dimensionless velocity U
and various value of damping ratio are shown in Table | , 2, and 3. The corresponding
graphical representations of the numerical solution are also presented in the figures where V,
represents the middle-span deflection values.

Figure 1, 2 and 3 depict the amplitude displacement of the beam for ¢ <1,¢ =1 and ¢ >1
respectively, where letter “d” represents the damping term <,
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Tablel: The Amplitude displacement of the beam for damping ratio less than one (C <1).

T d=-0.12 d=0 d=0.04
0 -6.84 94400 29.2

4 37900000 -7.79E+11 3.39E+08
3 100000000 2.07E+12 9.03E+08
12 -653000000 1.35E+12 -5.9E+07
16 -8.87E+09 1.83E+12 7.97TE+08
20 -10200000 1.35E+12 -9.1E+08
24 -3180000 -20800000 -2.9E+07
28 -4650000 6.16E+10 -4 4E+07

Table2: The Amplitude displacement of the beam for damping ratio equal to one € = 1.

t

0

2.5

5

73

10 12

15

17.5 20

Va

0

0.504

0.126

-3.95

318

135

-2.9

3.12 -0.072

Table3: The Amplitude displacement of the beam for damping ratio greater than one (S >1).

T d=1.5 d=2.0 d=25 d=3.0 d=3.5 d=4.0

0 | 2.46E+08 | 1.31E+08 | 7.73E+07 | 4.61E+07 | 2.85E+07 | 2.11E+09
2 | 4.83E+09 | 4.34E+09 | 3.84E+07 | 3.35E+09 | 2.86E+09 | 2.37E+09
4 | 1.06E+11 | 9.84E+10 | 9.07E+10 | 830E+10 | 7.53E+10 | 6.77E+10
6 | 1.71E+10 | 1.56E+10 | 1.41E+10 | 1.26E+10 | 1.11E+10 | 9.65E+09
8 | 5.81E+10 | 539E+10 | 4.97E+10 | 4.55E+10 | 4.13E+10 | 3.72E+10
10 | 5.83E+09 | 5.32E+09 | 4.82E+09 | 431E+09 | 3.81E+09 | 3.30E+09
12 | -2.76E+07 | -2.89E+07 | -3.03E+07 | -3.16E+07 | -3.29E+07 | -3.43E+07
14 | 2.56E+07 | 2.42E+09 | 7.56E+09 | 2.13E+09 | 1.99E+09 | 1.85E+09
16 | 7.27E+10 | 6.73E+10 | 6.19E+10 | 5.66E+10 | 5.11E+10 | 4.57E+10
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Figure3: Middle-span deflection curve of the beam for d=1

DEFLECTION (Va)
o

—/
0 5 10 15 20 25

-2

-4

-6

DIMENSIONLESS (t)
2.5E+12
Figure 1: The Amplitude displacement of the beam for damping ratio
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Figure 2: Middle-span deflection curve of the beam ford =1
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1.20E+11 Fig 3 The deflection curves of the beam for d>1
X
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Discussion of Results

The effect of damping on the displacement of the beam was investigated for when damping
ratio § < 1, ¢ =1and € >1 atvarious values of dimensionless time £. And figures 1, 2, and
3 show the amplitude displacement of the beam ford < 1,d =1 and d >1 respectively, where

d represent the damping term <. Moreover, the middle-span deflection of the structure was
also presented in figure 2. Thus, when the deflection curve of the vibrating structure was
examined, it was noted that the amplitude of the displacement of the beam was maximum for

absolute values of deflection when the damping value was zero for damping ratio ¢ < 1. This
was shown in Table 1 and graphically represented in Figure 1. The response amplitude of
deflection of the structure was also investigated for damping ratio € =1. It was found that the
deflection curve attains maximum amplitude at dimensionless time £ = 10, which implies
that the greatest amplitude of the beam displacement occurred at the middle-span of the
structure (Figure 2). In Figure 3, for ¢>1, various values of damping ratio were considered
for a fixed mass of the moving Load at constant velocity U = 5.45 . It was evidently

observed that as the damping ratio ¢ increases the amplitude displacement of the vibrating
beam decreases.
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Summary of the Results

The main findings from the investigations carried out on the effects of damping on the
response of the beam subjected to moving loads at uniform wvelocity are summarized as
follows:

It 1s noted that the amplitude of the displacement of the beam 1s maximum for absolute values
of deflection when the damping value was zero for damping ratio ¢ < 1. The deflection curve
attained maximum amplitude at dimensionless time £ = 10, which implies that the greatest

amplitude of the beam displacement occurred at the middle-span of the beam.

Conclusively, it is evidently observed that as the damping ratio € increases the amplitude
displacement of the vibrating beam decreases.

Conclusion

The mmportance and practical application of this analysis 1s seen in moving loads as they
transverse along suspended bridges and railways. The Engineers, Applied Mathematicians
and Applied Physicists who are concerned in designing structures such as railway and
highway bridges may take into consideration the determination of the deflection curves and
natural frequencies of the beam. Important attention may be paid to affect these effects to
avoid road-rail disaster.
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Abstract

Many new definitions of fractional order derivatives have been proposed and used to develop and
analyze mathematical models for a wide variety of real-life problems. The advantages of memory,
history, or nonlocal effects of fractional order derivatives motivated this research work. Therefore, in
this paper, we extended mathematical models that were based on integer order derivatives to fractional
order derivatives; we formulate and analyzed a fractional mathematical modelling of dynamics of
Ebola epidemic which includes both vaccination and quarantine via Caputo order derivatives. The
existence and uniqueness of the solution of proposed FODE are established through the fixed point
theory. The numerical results and simulations of the extended fractional order mathematical model
where explored in Caputo sense.

Keywords: Caputo fractional order derivative; fractional differential equation; Ebola Virus; fixed
point theory.

Introduction nonhuman primates. (Dowell et al., 1999) and
Ebola virus causes hazardous hemorrhagic fever  (Petersetal., 2002).

in humans and non-human primates like, The use of mathematical equations and formula
chimpanzees, gorillas, fruit bats, monkeys and  to represent real life problems via mathematical
forest antelope. It is extremely communicable models by Scientists/researchers solved and
leading to a death rate of up to approximately made remarkable prediction based on the
87% (Chowell et al., 2009). This virus was first ~ solutions obtained from the problems.
identified in 1976 in a place called Nzara and Epidemiologists (scientists that study infectious
Sudan and later found in a village near a river diseases) have played a vital role in investigating
called Ebola from which the name has been the transmission dynamics of some of these
initiated. The Transmission of Ebola virus can diseases and have been able to come up with
spread from human to human via direct contact recommendations for different intervention
with the blood and body fluids such as saliva, strategies which have helped to control the
mucus, vomit, sweat, tears, breast milk, urine spread of some of these diseases.

and semen of a person who has been affected by Many researches of nowadays have extended
the disease. Apart from this transmission the mathematical models that were based on integer
virus can also be spread from animals to human order derivatives to fractional order derivatives
beings. Ebola is characterized by initial -flu like in almost all areas as physics, engineering,
symptoms including fever, fatique, sore throat, biological sciences, finance, economics and
muscle pain, headache and vomiting. other related areas. Therefore, fractional calculus
As of October 8, 2014, the World Health is now an area where so many researches are
Organization (WHO) reported 4656 cases of being carried out. Sania et al., (2019) claimed
Ebola virus deaths, with most cases occurringin ~ that among the main motives of using the
Liberia (Lewnard et al., 2014). The extremely  fractional-order operators is their nature of non-
rapid increase of the disease and the high locality which offers an infinite degree of
mortality rate make this virus a major problem freedom that enables selection of suitable values
for public health. Ebola is transmitted through for the fractional-order parameter that leads to
direct contact with blood, bodily secretions and more accurate results than their classical
tissues of infected ill or dead humans and counterparts. Diethelm, (2013) was of the view
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that fractional derivatives can provide a better
agreement between measured and simulated data
than the classical derivatives. Eric et al., (2016)
added that fractional derivatives have special
characteristics of memory effect that depends not
only upon its current state but also upon all of its
historical states which does not apply to classical
derivatives. In support of this notion Musiliu et
al., (2019) affirmed that the memory effect is
very important during biological processes more
specifically, the growth of an epidemic process
which is directly associated with the individuals'
experiences, which takes place over a period of
time. In fact, the real epidemic process is
obviously sustained by heredity properties and
the memory effects perform a critical role in the
subsequent spread of infection. These additional
properties increase the accuracy and reliability of
fractional order systems than the other ordinary
systems.

Many researches prove the above assertions.
These include but not limited to Diethelm,
(2013); Eric et al.,, (2016), Nur 'lzzati et al.,
(2018), Rashid et al., (2019), Amin et al.,

Let

' T flxl=fix—h)
fi(x) = lim,.e {—h }

(2019), Musiliu et al.,
(2019), Kolade et al., (2019), Sania et al.,
(2019), llknur, (2019), Abdon et al., (2019),
Zafar et al., (2020), to mention but few.
Therefore the novel of this work is to extend the
work of Thomas, Boping and Zunyou, (2017)
which is a classical mathematical model of Ebola
epidemics to a fractional order mathematical
model of Caputo type and carry out its numerical
computation and simulations.

(2019), Musiliu et al.,

Fractional Differential Equations

Fractional Calculus is one of the branches of
mathematics that investigate the properties of
integrals and derivatives of non — integer orders
which involves the notion and methods of
solving the differential equations that involves
fractional derivatives of the unknown function.
There are three important definitions of
fractional differential equations; they are the
Riemann-Liouville, the  Grunwald-Letnikov,
and the Caputo definitions. We shall discuss the
derivations of these methods one after the other.

f"”(x} — Ijlﬂ”_..m [.f ':’-l.:'_:: [J-'—h]] {3]
;’ux]—,rsx—.lz]]_[f'lx—hl—,r'l.r—z.'t.-l
= ]imﬂ—':ﬂ { f h h } {4]
Simplifying (4)
f'(x) = limy Jf—;:{f'(x) —2f(x = h) = f(x - 2h)} (5)

Using the pattern of (3) and (5) in terms of coefficient, alternating signs and the binomial

exXpressions

Fx) = Iimh...mh%{f[le —3f(x—h)+3f(x—2h) + f(x — 3h)} (6)

{6) Can be expressed in a series form as

£"'(x) = limyo %Eﬁu{_ljf (j)f(x — jh) (7
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Where
(—1)/ - stands for the alternating signs
(j) - Combination which stands for binomial coefficient
f(x—jh) - stands for f(x — jh)
Hence the n™® derivative is given by
FOC) =limpg (3) Zheol=1 (}) f(x = i) (®)
Now for any real number say, o
; 1y i y .
F@00) = limpg (7) Zfea(-1)/ () Fx = jh) ©)
Now (T) = ﬁ by definition of combination

Using gamma function
n+1) = n! (10)
Therefore,
a! . Ma+1)
JHe=j1 ATa=j+1)

Since j! is an integer, so it has no meaning transforming to gamma function.

(11)

Putting (11) in to (9)

n
1y . TMa+1)
['x'] =} - S ' 3
7 :I«.]Tr(h) Zﬂ‘: 1 ju-{ﬂ_jﬂ)f(r jh) (12)
_||T
”=ﬂf h — 0, n — oo foraconstant a. a < x i s
L ft x—d
Therefore,
n "
.i’,[rj =T n [ Z 2 J’ I ({r + -1) ( . ¥:|1- ) 2
F(x) I!E—I}a[x—u) (-1 j'!r{ua_j_i_l}f X _J'( = ) (13)

=0
GRUNVALD LETNIKOV fractional derivative.

The Grunvald Letnikov fractional derivative is quite complicated because it involves a limit.
Therefore, further studies and investigations will be carried out so that a useful definition and
useful formula can be achieved.
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,rf““{x:n—nm( ) Z( nf(.)f{x—;'h} (14)

Where h = % a<x

To change to negative a so that we have integration because integration is a reverse of
differentiation,
ol
(T} —— By definition of combination symbol

Jilee— 3!

ala —1).(a —(j—1a - )

(15
e = ! J
Switching from o — —a
—a —a(—a —1).(—a— j+1)!
()= = (16

7!
Since (-1) is common

la‘{rz FD) ot - [}".

(1) . |, (17)
L g+ J
Writing (17) from the right end
(1)’ [r‘z+; 1[a+!}r1f—|
.f! i
Multiplying and dividing through by (& —1)
1)/ cx+_;—!+.l.,+{a+!}cz{a£—1}i—| (18)
e =1)! |
_ D (@+i-) (19)
e —1)!
—ay  (=1))T(a +))
. ] = ; 20
( j ) G (ee) (20)
Now substituting (20) into (14) we have
(=1)T(a + j)
“”x—hmh” 1)/ x — jh 21
FC@0) Z{) T =) @D
(-1/(-1) =1 22)
fE)(x) = lim h® Z P+ ,r(x — jh) (23)
’ n—=i 1 F{ :}
=
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it
f‘“?(r}zhﬂz (r” = fGx = jh) (24)
I=

X—d
for h = " a<x

when o = 1
PR) =k Z ’F{U x = Jjh) S

I'(1 + j) by definition of gamma function = j!
I'(1) is 0! and (1! is 1

Therefore, lim,,_, . EF___D hf(x — jh) — which is simpler and famous form of Reiman Integral?

Using h = LI_G x—t=u, —dt =du, when t =0,u=x
n
I_I'[_L' — Nt = - I_}’Tu hedut (26)
L} X
1"(f) = | f)du. @7)
when a = 2
- rz+j)
(2) — T & o
19(f) = lim h Z e Gh) (28)
j=0
= lim h* > (1 +) f(x — jh) (29)
=0
F—3 =1
e+l
= limh* )" j fx = G — D) (30)
It }'_1
n+1l
= “]_?1 h* Z Jflx—h—jh) (31)
Let x—h=y
n+1
=limh" > jf(y - jh) (32)
mn =
el
= lim h* > () f (v — j)h (33)
i=1
= J‘f{ x —t)dt using Riemann Integral (34)
L]
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Therefore,

letx—t=u, —dt=du, t—wx, U=>x, I — X, a—a
—I{I— ) [ (1 )lu (33)
I . j{x —u) f(1)du (36)

i

Therefore, following the pattern

i : ) 5

/ {'f]—aj{l- w)” fu)du (37)

I'" ()= ] j{r—n} 'f()du (38)
- (n—-1)!°

.IFI”I g T i X
(f) FQrz]-[ x—u)* fludu (39)

. (39) 15 known as Riemann Liovelle Fractional Integral

From the Riemann Liovelle fractional integral (39), we then derive the Caputo Fractional
Derivative as

(l-a

:DH f{\}— ! Tt fu'-{ } {4{”

= r{”_g}lj:{l__f}ﬂ i Ilf-n..-llil_f]d: jil—]-\::aq;_” {41!
When n=1

|:II D;,j'{_‘,} = J{ X — Ir] .r {.Ir:'vﬂ'rlr (42-3

.. (42)1s Caputo Fractional Derivative
Where (x—¢) " is called kernel of integration.

In this paper, we will use the Caputo  which are hardly physically interpreted,
definition. The reasons which led to the whereas the Caputo approach uses integer-

choice of the Caputo derivative are mainly  order initial conditions. Furthermore, the
practical. The Riemann-Liouville approach derivative of a constant function under this
requires the initial conditions for differential fractional operator is not zero.

equations in terms of non-integer derivatives
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The extended mathematical model of
dynamics of Ebola epidemic which
includes both wvaccination and
quarantine in the sense of Caputo
fractional derivative

Mathematical modeling, analysis and Markov
Chain Monte Carlo simulation of Ebola
epidemics proposed by Tulu et al, (2017),
has four compartmental model as follows;
Susceptible individuals (S) may become
infected (I) after contact with an Ebola
infected individuals who are capable of
infecting others including nurses, doctors ete
at hospitals and with a chance of infecting
others before being recovered/removed from
the disease (R) or die of Ebola and then join
{D).with a constant population.

The population of susceptible individuals is
produced by the loss of infection acquired
immunity into the Population at the rate yq,
after contact with infected non quarantined
individual at the rate f#; if acquires infection
then the population will be reduced. When
vaccination taking into cognizant the
susceptible individuals will further reduced at
the rate y.

15

ds _ B=gsin
o ¥, e
=P il + @y (1= B) = 8l + 8,1

R
e a Bl + a,(1 — ) +yS —y.R
d

I

The population of infected individuals is
generated by the infection of susceptible
individuals at the rate f; reduced by
recovering from Ebola disease at the rate of
aq and @, where ayrecovery rate of infected
quarantined individual and &, 1s recovery rate
of infected non guarantined individuals. This
population is further reduced by death due to
Ebola at a rate &; and §; where death rate of
infected quarantined individual 1s §; and &, 1s
death rate of infected non quarantined
individuals due to Ebola. Let us assumed that
a, is greater than a, and &, is less than &,
this can be relevant in ecological studies.

Similarly, the population of individuals who
deceased is produced by individuals who die
as a result of Ebola and the population of
recovered infected individuals is generated by
those who recovered from Ebola, and those
individual from susceptible because of
vaccination at the rate of y and reduced by
individuals that loss immunity the rate of y,.
Hence. the original integer-order model
adopted from Tulu er al. (2017) can be
writlen as:

(44)

Where the total population becomes: N(t) = S(t) + 1(t) + R(t) + D(t)
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The extended model 1s formulated by to ensure that the right- and left-hand sides of
integrating the Caputo fractional derivative in the resultant fractional equations possess the
(44). Following the methods of Rezapour et  same dimensions. Consequently, our new
al., (2020), Baleanu et al., (2020) . Diethelm, Caputo fractional model for dynamics of
(2013), Amin et al, (2019), Sania e al, Ebola epidemic model which includes both
{2019) and Zafar et al, (2020) where some vaccination and quarantine can therefore be
parameters in the system model are modified  written as follows:

f1(1-F)s(ehit)

T LEDES(E) = yiR(E) — =

-y S(t)

ge-1cpap(e) = BOBSOID _ o p1(e) + ap(1 — BI(E) — 8:1() + 8,1 () (45)

W

T LEDER(E) = ey BI(E) + @z (1 = BI(E) + ¥S + 1R (L)
721 fo'l-’(t} = & d(t) + ;1(t)

With initial conditions

5(0) = Sy, 1(0) = I, R(0) = Ry, V(0) =V,
(46)

Existence and uniqueness of solutions of the model

Examine the existence and uniqueness of the solutions of the Caputo fractional model for
dynamics of Ebola epidemic in Eq. (45) with imtial conditions (46). Using fixed point theory,
we can prove existence of solutions for the model as follows

Now Applying the Caputo- fractional integral operator 1 to both sides of Eq. (45), we have

(1-g)s!

S = 5(0) = ¢, [y, R -2y 5,

1®) —10) = B0 — g Bl + ay (1 — ) — 8,1 + 6,1 ]
(47)

R(t) = R(0) = G, [ @y BI + ay(1 — B)I + yS — y1R],

V(E) = V(0) = CEL8:] + 61),

Applying the definition of fractional integral on the above equations, we get

S(8) = S(0) = S [ [nR(@) - BEEEID _ y5)] (¢ — ) dlg
() = 1(0) = £ [{IECEO0@ _ q,81(¢) + ax(1 - B)I(9) = 6:1(0) + 8,1 ()] (¢ -

@) "“de
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T

R(t) - R(0) = = [ . f1(@) + ax(1 — B)I (@) + yS(p) — V1R(@)] (t — p)**dep
(48)

r':!“l.
a)

V(E) = V(0) = —— [1[8,1(p) + 8.1 (@)] (t — )~ “dyp

The kernel of the above equations can be written as follows

V(£ 5(0) = r:R(e) - BHEEEEE —y 5(0)

V(6. 1() = 2500 g, g1(e) + ay (1~ BICE) = 81 (1) + 8,1(0) (49)

Va(t, R(t)) = a, BI(t) + a,(1 — B)I(t) + ¥S(t) + v, R(E)
V(L V(6)) = 8,1(t) + 8,1(D)

Theorem 1. The kemel V, satisfies the Lipschitz condition and contraction given that the
following inequality 0 = ij + ¥ < 1 hold.
Proof

Choosing S(t) and S,(t) we write

[v.(e.5®) = V4 (2. 5:0)|

1—8)S(t)! 1 — BYS. (£)]
= |iF]H(r}_ﬁ1[ ﬁ; [t) (E]_YS{f}]—[F]H{t]—!;][ ﬂirl{r] {t}
— ¥ $1(8)] |

L— P 1-B)I
swug(:)—mrm -|-}.r| 2 M“’H
(1 =N
= ﬁ'ﬁﬂ‘ +yIS(E) = S, @)l
< Li|I5(t) — S, (1)
Where L; = Bila—pI +y

N
Therefore, the kernel V, satisfies the Lipschitz condition, and the kernel 1s a contraction. For
1-g)1
0< 81y <
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Repeating same process we can easily show that the remaining equations satisfy the Lipschitz
condition.

V2t 1(0) = Vo (e, L (D) < LallI(E) = LD
[Va(t, R(E)) — Va(t, R ()] < LalIR(E) — Ry (D)
|7,(6. V() = Vo (e Vi ()| = LallV(E) — Vi (Ol
Where a < I(t), b < 5(t).

Ly = +ay, —afi —6, +6;, Lz =ayfla+ (a —azfla+yb+y, And L, = §,a + 6;a

By using equation (48), we write the recursive formulae as follows

S(6) = 5= [} V4(£,5(0) (£ — @) ~“dp

I8) =+ ]j Vo(t 1(t)) (t — @) “de (50)
R() =T JJ Va(t, R(D)) (t — @'~ dg
V() = I V(6 V() (t— @) d

H]

Taking the difference between the recursive terms, by considering the mitial condition in
equation (46). We have

Aa(t) = Sj(t) — Sp-1(t) = r{ } f V1 (£:j-1() = V1 (£:5j0-2(0))) (£ — )~ 4dop

ﬂzrt(t} = Ijn(ﬂ 23 Ijn—l{ﬂ' 1_.{ }J’ (vz t l}n 1“)) ?2 (t I_m 2[-1'})) {t L fﬂjl adqu

ﬂ'3rt(t} = R,r'u(t) R;ra ]ff) T(a) _I- (v3 (I R,Irt |[E]) ?3 (E, Rf?l—i(t})) (t - le_adq}{f‘l”
i o | £

T )y T (6Vn-1(©) = Va (6:Vn2(0)) (€ = 0)' "

Ayn(t) = _,l.‘rt(E) j?! () =
We can easily observe that

Sm(t) = ﬂ‘ﬂ‘u{t] I;n(r} Ej ﬂﬂz}([} J'n['t) = }rzﬂﬂh{[}rvfn“} = r.rl:ﬂﬂr;j{[}-

Now taking the norm of eqn. (51) and applying the derived Lipschitz conditions on it, we have
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181 @1 < S 13 |91 (£:5jn-2(0) = V1 (£:Su-a® (e — )17 dp
1Azl < 55 [| @2 (£ hnoa () = V2 (£ a2 (0 — 031 dp

18501l < 51| (v_? (6 Ri-1®) = 93 (6 Ry UJ))}“ — @)% do (52)
1847 (D)1] < :::} -rt: |W4 (!Jvm%(i}) — V4t Vin—a () )t — @) | de

Using the Lipschitz condition in above equations, we have

a=1
1812 (DN < T Lt [y 181 -0y (D] dep

.rﬂ:

f_tlb L, I(:”ﬂ;:fn—i;u{t}n dip

Azl < 5

a=1
Az, (D) < %I';':'I'L:i f;”'ﬂﬂn—!}(t)” dep

=1
184 (N < 55 La Sy |s6n-1 O] doo

Thus, with eqn. (53) we can easily established the existence of solutions of the fractional order

system (45).

Theorem 2. The solution of Ebola virus model involving Caputo fractional-order operator (45)

=1
exists for ty given that :,[—Mtnié <1l,i=12..4.

Proof

Using the recursive equation in (53), we have

181, (D1 < 15,0 |75 Lt
Fa—1 mn
1820 Nl < I (O |55 Lat|
=1 n
Hﬂﬂn(t}“ = ”Rn(ﬂ]” | Ma) Lﬂt_ {54}
184 (DN < V(O [F5 Lat
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Solely, the solution of Ebola virus model (45) exists and is continuous.

Now, to manifest the system (48) is the solution of our model (45), we write

5(t)—5(0) = Srz{t] = Elrz{ﬂ
I(t)— H0) =

(55)
R(t] = R(ﬂj == Hu{.tj T I:I‘:‘S!:I:L['t)
V(L) — V(0) = V(L) — Cynlt)
Therefore, we have

=1

T
(@)

€Il =

Recursively, we write

x=1
€O = |75
Now at t;, we obtain
E—1
G (DIl = @)

Ly

~

fn(f) . Ezn (t:'

t a=1
j |28 S®) = V4 (6,501 @) | dp < —— LIS = Spsllt
o ['(a)

n+1 L'l h.

- n+1 Llh

As n approaches infinity together with the limit we have||C;,(t)]| = 0. Similarly, one can easily
show that ||Cy,(t)]| = 0, fori=12,..4,. this completes the proof of the existence of the
solution. In order to prove the uniqueness of the solution of fractional-order Ebola virus model
(45), we assume the system has another solution, say §*(t), I"(t), R*(t) and V*(t). such that

1

S(t) — 5°(6) = ]:—J

Jy 94 (£,5(8)) = V4 (t, S (1) dop (56)

Using the derived Lipschitz condition above and Taking the norms of the equation (56) we have

IS (&) = s* (Dl = %Lﬂ‘- IS(¢) = S* ().

This can be written as

T

Ise) = s @l (1-
(57)

a—1
<
M) th) = 0.

Theorem 3. The fractional-order Ebola virus model (45) has a unique solution given that
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Proof

From Eq. (57),

Is@®) —s* @l (1~ %LEE) <.
(58)

And the property of norms, we write ||S(t) — S*(t)|| = 0, which is 5(¢) = §*(t). Applying the
same approach, we can easily show that I(t) = I"(t),R(t) = R*(t) and V(t) = V*(t). Thus,
the fractional-order Ebola virus model (45) has a unique solution.

Numerical Experiment

We now present the numerical results and simulations of the extended fractional order
mathematical model in Caputo sense with the help of the derived algorithm and numerical coded
written in MATLAB environment using the model equations and the values of the parameters as
N =10.000,8,=230,=0.3,7, =025y =0.15u, =0.4,u, =0.25,5, =0.3,0,=0.75

LR =1 1 r
_ X |" —8{l | ] L]
A i | 18k ST
| ; i ! I. I;:.I.
I3 = D1} | ”I' __r:
1 .-'| \ | 1z
|
ﬁ i .:-I- 1
o P L: |
O ng _| I
a4 g
u e &
04 o4
Il G
it ™ = .
|'-. e — e P A e | - y—
| i
i T )
Tir T
FIE. 1: Numerical Solution |'l:-.- ||'|'||"r|i-.:||! FL.MMs3 at -f = |1:|_ -|"| FJ;'_E. 2+ Muimerical Sohation h'.- |1!I|'|':r;.'i| FLMM= at Ir = !||. 13]
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Diiscussion

The dynamics of FEbola wvirus model are
examined through the integer-order (ODE)
and non-integer-order (FODE) models
approach. The integer-order model does not
only used to formulate the FODE via the
Caputo definition, but also supports some
results reported by the FODE model. Putting
in different value of alpha (fractional-order w)
for the FODE indicates that the results
approach the integer one (see Fig. 9 and 10).
This finding is similar to the results reported
by many authors in different scenarios,
Baleanu er al., (2020), Rezapour ef al., (2020)
and Diethelm, (2013). The systems of FODEs
in (45) where solved numerically using the

Conclusion

In this research, we have extended the
existing work titled Mathematical modeling,
analysis and Markov Chain Monte Carlo
simulation of Ebola epidemics which 1s a
classical model of integer type to a non —
integer type of Numerical Simulation of
Fractional Order Mathematical model of
Ebola Epidemics in Caputo sense. Based on
the results obtained we will conclude that our
result is reliable by providing a more realistic
mathematical models that will interpret and
enhance the understanding of Ebola epidemic
and has contributed to research activities in
the field of Ebola epidemic, so also the field
of fractional derivatives.

Garrappas  code FDE PII2  accordingly,
Garrappa, (2018).
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FORMULATION OF ANINTH ORDER BLOCK IMPLICIT
ADAMS MOULTON METHOD FOR THE SOLUTION OF FIRST

ORDER ORDINARY DIFFERENTIAL EQUATIONS
JO Oladele and AN Kantiyon

Department of Mathematatics Air Force Institute of Technology, Kaduna
Joshuaoladele70@gmail.com
Abstract
This paper considers the formulation of a ninth order (k=8) block implicit Adams's Moulton methods
for the solution of stiff and non-stiff first order Ordinary differential Equations (ODE).We applied the
methods of interpolation and collocation procedures to generate the continuous formula, which was
evaluated at the grid points. The procedure yields eight discrete schemes which are combined to form
the block method. The new method (k=8) is found to be of order 9. The method is consistent and zero-
stable, hence convergent. Numerical experiments carried out on the new method shows that
implementation in block form converges faster to exact solution with minimal error. Also the results
obtained using the block form show that the new method performed better than existing methods.

Keywords: Grid, Implict, Stiff, Block methods, Convergence, Adams-Moulton, consistent

Introduction: It is in the light of the above challenges that

i 2 : . ’ we present a suitable numerical method that can
Differential equation play an important role in

modeling wvirtually every physical, technical,
or biological process, from celestial motion to
bridge design to interactions between neurons.

easily be used for fOnding approximate
solutions for first order ordinary differential
equations.

Many researchers have developed several
numerical methods for finding approximate

Often, systems described by differential ! . 5
solutions for solving first order ordinary

equations are so complex, or the system that " 7 3

) . . ) differential equations of the form (1.1). Notable
they describe 15 so large that a purely St
among the researchers are Yahawva and Tijjani
(20135), Badmus and Mohammed(2016),
MNdanusa (2007). Famurewa. ef af (2011),
Adesanya, ef @f (2012), Awovemi, ef al (2014,
Fadugba, er af (2014) ., and Akinfenwa er al
Most of the differential equations we need to (2011}, to mention a few.

solve in the real world, have no “mice”

analytical solution to the equation is not
tractable. It is in these complex systems that
computer simulation and numerical methods
are useful.

Maost life, phwsical and chemical problems
which may not be solved analytically can be
modeled 1nte stff and non-stiff differential
equations, hence the need to develop adequate

algebraic solution. That is, we cannot solve
them wusing the awvailable techniques (e.g.
separation of variables, integrable
combinations, and the use of integrating ! :
2 ST LE high order algorithm to  handle these

factors ete.) or other similar means. .
classes of problem

Even if we can solve some differential
equations analytically, the solution may be

gquite difficult and complicated and so, are not

Also there are differential equations whose
exact solution y(¢) includes a term that decays
exponentially to zero as t increases, but whose

wvery useful. In such case, a numerical : E : E
derivative are much greater in magnitude than

approach gives us a good approximate

: the term itself. Such differential equations
solution. SR i ; :
are called stulf differential equations. It is
Consider an initial wvalue problem 3" = important to note that this class of
Flzx. ¥). v{xa) = ¥ in [a. b] differential equations cannot be handled by
(1.1) ordinary explicit methods. It is in view of the
foregoing that we shall develop ninth order
If (1.1) cannot be solved algebraically. it is (K=8) implicit linear multistep methods
necessary that we resort to numerical methods { Adams-Moulton) for the solution of stiff and
lo obtain useful approximations 0 a pon-stiff first order ordinary differential
solution of (1.1). equations

The main aim of numerical methods is the
design and analysis of techniques to give
approxiumate but accurate solutions to hard
problems.
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Cq = E]:('x]'l" Eqﬂ'z <+ 3qﬂ:3 LR .I!fq C'Ck) — '—'—'—(ﬁl - Zq_lﬁz e kq_lﬁk}-q — 2_.3 .

(g—1)t
{1.5)
Hence, the linear multistep method (1.6) is said to be of order p if in (1.8),
Co=C=C, ..=Cp=0but Cpyy #+0 (1.6)

then €}, 41 is the error constant.(Badmus and Mohammed, 2016)

Convergence

A numerical method is said to be convergent if the result it generates approaches the exact
solution as h approaches zero. That is, when it 1s applied to initial value problem, it generates a
corresponding approximation which tend to the exact solution as n approaches infinity, that is:

Yn = ¥(xy) asn - o

Consistence
A numerical method s consistent if it is of order p=1, that s,

oy = 0and B g ja; = X0 B

Methodology:

Consider the Adams-Moulton method of the form

Yn+ke = Ynak-1 = hz;‘:a Bifn+j (2.1)
Given a power series of the form

P(x) = j?':[, a;x! (2.2)

Equation (2.2) is used as our basis to produce an approximate solution to (3.36) as

y(x) = BT apxl =y (2.3)
Y (@) =X japxd = f (2.4)

Where a;” are the parameters to be determined and m and t are the points of collocation and
interpolation respectively. This process leads to (m + t — 1) degree of the polynomial required
in the method with (m + t — 1) unknown coefficients which are to be determined by the use of

maple 17 mathematical software .(Yahaya and Tijjani.2015)
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Derivation of Block Method of Implicit L.M.M at K=8

Specifically, the eight step Adams-Moulton method ( k=8) is derived as follows.
Using equation (2.3) and (2.4), we set m=¥ and t=1. The degree of of the polynomial is

(m+t-1) = 8. Equation (2.3) is interpolated at x =x,,,;;j =6 and (24) is collocated at
X=Xn4;:]=01234,56,78

This gives the following non-linear system of equations of the form

¥(x) = B0 @Xpye=Ynin k=7 (2.5)
y'i(x) = E?=1jaj-xi;;= fa+r  k=0123456,738 (2.6)
Equation (2.5) and (2.6) can be written explicitly as

2 3 4 4 5 & 7 i ]
gy + Ay Xy + QpXp 7t QX 70 X 7 M5 Xp s + QeXyr + O Xppr + QgXy s + QoXg 475 Vhar
ay + 2a,x, +3ax2 Hayxi+5asxi+6agxy + Ta;x8 + 8agx] + 9aqxl =f,
+2 +3anx2,  thagxd , F5acxt  6agxd, + Tasx8,, + Bagxl,y + 9asx,, =f,
iy Az X411 A3Xn4q A4 X541 QeXpi1 e e T7 Xy 41 gXn41 Qdn41 'Jf.rn-‘]
2 3 4 5 & 7 B
dy + 20z X4z T30aX5 42404 X042 TS5 A5 X042 P60 N 42 + TA7 X545 + BagXpez + 909X 5 =fusz
+2 +3a3X743 404 X0 42355 X4 a3t 606X R4z + TA7 X043 + BagXi sz + 9a9XD 3 =,
ay Ualpeg T3 Xp 43T 205 4 3T O, 43 A7 Xp43 g Xp+3 9¥Xn43 =fn+a
. F o4 3 4 5 5 7 8 _

Ay + 2a5Xn 44 T303X5447404 X0 475501406 NR g + Tz X 4q + Bagxy g + 989X 4 =frsa
+2 +303%2, 5+ XD L s H5 05X 566X 5,5 + TA7xE 5 + 8agX]4s +9a9xE o =f
iy OpXpgen TIN50y Xy e Tl Xy s TOURX 4 2 A7 X045 IgXy4s AgXy 45 =lnes

a, + 2a +3a.x2, Hha,x3, H5acxt, A6a.x3. . + Ta-x8, . + 8agxl .. +9agx, =

1 %46 T X s T AL 5T A5 4 6Xn+6 A7 Xn+6 g ln+5 9Xn+6 =fnte
a, + 2a; +3a3%2 H4a X o, t5as Xt H6acxd, , + Tas x5, + Bagxl . + 9agxt o =f,

1 2 ne7 347 T A7 5An+7 Uy 47 A3 Xps7 8n+7 GAn+7 “Int?

z 3 4 5 5 7 B Lo
(23U PR S [/ FS s 1 PR T PR AT P S S T S o 1 PR S i (L ity S (2.7)

52



M.A.N. ABACUS

ﬁ Abacus (Mathematics Science Series)
\ol. 49, No 3, September. 2022

Equation (2.7) is written in matrix equation form as

! ,? 3 4 5 L] T b )
l 'l.lr =T 1.!? 7 -T-n'l T .T" +T n+7 '1.1.' +7 n+7 'r.ll T .T” +7
a 3 7 \
001 2x 3 a4 st 6r. T8 ow 9f || 4 w6
i} n i mn " mn "
P 4 f 7 g iy f
5 2 : 5 :
0 I hfﬂl +1 J'1'r.l +1 4'1'.lr 1 "xﬂ | bx n+t+] 'ril | l'h.” +1 I;L'T.l.‘ +1
. a1
3 3 = A g (4] 7 H
) . o i )+
0 1 Nz lf:; +2 4"(.-.1 -2 “-.ll +2 b n+2 ?'rﬂl 2 1|IL1'rJ-l-J J.'L"_.: iy foa
I
} 1 4 5 ] 7 & 2R
Ve = : - 2 N
0 1 e, .3 o 4_1”_3 5.1(”.] fhx s '?.r”_l Yora Pz || 9 -Jr:.-'T { )
; 5 4 4 .. 5 - b 7 £ g A
i 1 X ik 31‘»!.14'1.-;-4 "&u”._i b g T 1'{1.’“_1 X 4 5 LR
a 7
3 3 d 3 f 7 ol [ ]
0 I Zrﬂ'—ﬁ J"'r.l*ﬁ 4“'.1.'—5 Sxﬂl—.‘- bx n+5 '-".r”_5 H‘"u-rﬁ h.lr*:‘ -
i -"er L6
3 4 5 & 7 T
] - =~ . = ¥ N
0 I “ht+h ".I'r.l—!r I:{I"I'.l.—ﬁ :"Trr"'i'- bx rti ?'rﬂ—h nte “Tath Ff.g I|I -
s mry
3 4 ] [ 7 7
Ty . A h - . L S I
0 1 2 7 3.1.”|? 4-.1”_7 53X o (1.1n|? 'I".l.ﬂ.? ?ﬂ”l.l, I;"I."I_I, g s
0 1 2% .. 3¢ .. 4r 5. 60 T80, & . 9
w+8 TTR+R TH+R Tn+R T R+§ THTR R+8 T+l
The continuous formular for 2.8 is given as
v(x) = Yui7 + h[Bofn + Bifas1tBafosz + Bafuss + Bafuta + BsfarstBefnse
+87 fas7 + Bafuis) (2.9)
Explicitly equation (2.9) is written as
= n ( 149527 7oL x® | 29531x%  267x%  1069x° 3 x° 13 x7
Ve Yn47 S18400 560 Mt 30240 h? 640 k3 900 h* 160 AR5 GTZDAS
1 + 1 .'r:"') f + ( 408317 4x?  4B1x*  349xY 329X 115x° 73 X
8960 h7 = 362880 k8 T 259200 f 105 he 144 h* 450 h* 864 h3 5040 h%
1 x® 1 xg)f +( 24353 7x2  207x* 18353 ¢t 15zE9x® 179 239 x7
1152 A7 45360 hH R+l 259200 h 20 h2 2880 R 7200 h* 432 RS S040 A"
17 xf'_l_ 1 x")f _|_( 542969 28x%  2o003x%  7orxt  Ze@x®  T1axb 149 x7
5760 h7 12960 he) I H2 259200 3 h 135 h? g0 k3 75 ht 98 kxS 1680 k%
11 x* 1 x")f +( 343 h 35 x* _|_5=:|1x3 1457 x* n 10993 x5  179x% 209 x7
1920 h” 6480 h8/ I1H3 3240 4 h 48 hZ 144 h3 2880 h* 216 h% 2016 A6
1 % + 1 xg) f +( 368039 28x2 472 4891 x' 1193 x% 2581 %0 291 z7
144 h7 = 5184 p8 /) /0+4 259200 5 h 5 R®T 720 hY 450 hY 0 4320AR5 5040 RS
31 x* 1 x‘*)f + ( zninz3h 7x2  2143x¥ 187x% 2803 x5 1320 61 x7
5760 h? 6480 pB) IS 259200 3 h 540 k2 64 h*  2400h% 4B K5 1680 h®
1 x“+ 1 :r")f +( 111587 , 4% 103x3 527 x* &7 x9 61 x% 7 x7 20 xB
384 h? ' 12960 K8/ /T1HE 259200 T h 105 h? ° 720h3 225 hY 0 Bed4 RS TZ0RS 40320 K7
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)f ( 8183 1 x%2 121 23 469 x* 967 x° 7 x& 23 x7 1 x8
45360 h8/ IMt7 518400 16 h  1120h%2 5760h® 28800 h* 864h5  20160h6 11520 h7
362880 hﬂ)f“‘*"s (2.10)

Equation (2.10) was obtained by setting x,, = 0

Evaluating (2.10) at (x = x,.4;;j = 0,12,3,4,5,7,8), we get the required eight set of discrete schemes that
form our block methods.

The generated block schemes are given below:

(] 149527, AOBIIT . 383 42969
Y=Y +7 7 S1ga00 n T 259200 "n+17 259200 n+2 T 259200 3
43 368039 261023 . 111587
= 3240 Mi+4 T 259200 M +5 T 259200 Ma+6 7 259200 M+
8183
+7
518400 Jn+8
9 241 477 387 . 209
yin+10=5, 7% Ta00 W ~ T00 Mat1 = 350 Mav2 00 Mhta T Tag Mata
387 41, 241 9
o 2L TP h —Z
700 Ma+5s 7 350 Ma+6 ™ 700 M1 T Tagp M+
45 2525 34015 75175
212,49~ Tastsy Mo T o576 M1 T o576 M2 T 70576 Ma 43
5125 55205 93025 . 26365 175

" 4536 Mnvs T 70576 Mnts T 72576 Mnve T Ta576 M1t 0736 Mt

_104 244 4402

Mn+31=, 49 = 41?5 Mot o175 Meer T Tar7s Mav2 T Targs Maes
3854 0 18724 . 718, . 107 .
= 2835 Mata T Ta17s Mats T Tarzs Mave ™ 2005 Mot T Targs Mass
8L 389 1719 4833

M+ 4120047~ Tag00 Mt 20400 M+ 1 ™ 22200 Mav2 T 20200 M+
209 ., 17217 ., 28809 . 8101 . . 369

= 280 M4 ™ 32200 Mn+s T 22400 Mn+6 ™ 20400 Mu+7 T Jagen Ma+s

127 .. 583 . 1189 5581
W~ S LooEEE
M+ 3125, 47~ 13400 Mo 56700 M+ 1 28350 a2t 700 Mt
_sI3 13739, 38149 19937
11340 "Mn+4 ™ Sg700 M+ ™ 28350 Ma+6 ™ Se700 M4
119
* Te200 M +s
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7297 .. . 34453 .. 147143 _

; {0 SAESS s RO

M+ O1= 7~ Saass00 Mo T Ts1a400 Mo+ 1 T Tg1aa00 M2
377521 , . 8233 876271 , . 1622393 | .
=12 L2222 ) i SO |7 S
1314400 "M +3 " 22680 Mn+4 T Tg1aa00 Mo +s T Ig1ad00 " +e
687797 .. . 33953

1814400 /n+7 7 3628800 o+ 8

33953 . 156437 645607
Ti Ry e i ) DRIE _ DO .
vn+81=5, 17~ 3638s00 0+ Tg14a00 e+ 1 T 514000 e +2
IS73169 31457 . | 2797679 . _ 2302097 .
1814400 " +2 22680 Yint4 i814400 o t3 1814400 n+b
2233547 . 1070017 .
seaddotl § jo DL
1814400 " +7 1 3g28800 Mo+ 8

(2.11)

Basic Analysis of the proposed block Method

Order and Error Constant of the Method
The order and error constant of the scheme for (2.11)are obtained by Taylors series expansion of

the terms involved in the schemes, and the evaluation and simplification are done using maple 17

software. We set the following :
Yn = Yo, fa = hYy, = hy.in order to carry out the procedures

we established from our procedure that equation (2.11) are of order [9.9.9.9.9.9.9.9]T with

small Error constant

(_ BRO623523004867 47563276288  26635434755705  40714164539383

\ 419904000  ° 55125 ' 23514624 40186125
31201509280523 5660029883537 25838654747025299
28224000 5740875 ° 20575296000
_ 814296227424101971 JF
20575296000

From the definition of consistency above, it 1s clear that the eight step Adams-Moulton method 15

consistent since the order is greater than 1.

ZLero Stability of the Method K=8

Similarly the discrete schemes in equation (2.11) can be represented in matrix form as shown

below
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a1 Yo7
Loo000 10| Doo00000 0
gi1o0o000-10]""? onpooooo ol """
oo1o000-1of 3| [oonooooo ol -3
CO00100-10( %4 0000000 O Yos| +
000010 -10 _.”H_utnﬂt]Lrt]uu y g
00000110, DO000D00 O v
000000 -10]| 0000000 -1
000000 -1 1|7+ 0000000 of "
Yot Yo
241 477 387 209 387 4§77 241 4
00 350 To0 140 700 350 700 1400
2525 34015 75173 5125 55225 Y3025 26365 175
72576 72576 72576 4536 72576 72576 72576 20736 | |fnen
104 244 4402 3854 9232 18724 718 107 Ja 42
14175 14175 14175 2835 14175 14175 2005 TS ||y
180 1719 4833 09 17217 28809 8101 369
22400 22400 22400 280 22400 22400 22400 34800 | | Jn+a
‘ 583 1159 5581 1513 13739 35149 19937 19 e S
56700 28350 S6T00 11340 56700 28350 56700 16200 | | ¢
34453 14743 377521 £2331 76271 1622303 687797 33053
(814400 (814400 1814400 ~ 22680  [R14400  [R14400  [R14400  I62RH00 P
408317 24353 542969 343 GR039 261023 11587 RI%3 A
TT2E0200 259200 250200 3240 250200 250200 250200 518400
156437 645607 1573169 31457 2797679 2302297 2233547 1070017
1814400 1814400 1814400 22680 1814400 (814400 1514400  3628K00
9
0000000 BT
425
0000000 -z |1y
0000000 -— Ju-s
14175
81 fn—s
0000000 - |lp | (2.12)
+h
000000 -~ |-
113400
7298 0
000 IJHI]-W lrr'r_l
Q000000 49597 fn
518400
33953
agoonnon -m
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Equation (2.11) can be represented as

AY,,,; = BY,+ h[CF,4, + DF,] (2.13)

000000
0o00o00n
oo o
Doo0o00 o,

loonoa-14
10000 -109
go01000-10
LetA=|000100 -10(, B=

o Qa2
=
=
=

G000 1o-10 oo0o0o000 o0
cooo00l -10 oo0o00000 O
00000 -10 Qaoodaoo -1

GQooao0n =11

0000000 0O

241 477 187 20 187 477 241 9
T T00 T 350 2000 140 C 00 © 350 T 1400
2535 34013 75175 5125 55225 03025 26365 175
72576 72876 7257 4536 7257 TTAETR 72576 0736
104 244 4402 1854 9232 18724 718 107
14175 T 14175 14175 2835 14175 T 14175 RETIAL) 14173
389 1719 4833 200 17217 IRE00 £101 169
C= 123400 22400 22400 280 22400 22400 22400 H4R00
583 BEL] 558 1513 13739 IR 149 15937 119
SATO0 28350 SET00 11340 SE700 T 28350 AT [ 6206
34453 14743 377521 8233 R76271 1622393 GRTTHT 33953
1514400 B IR 14400 1814440 ) 22680 18 14400 ) 1814400 ) 1814400 TR
408317 24153 5429460 Pk 168030 261023 [ 11587 8143
TO2A0200 250200 259200 3240 250200 250200 2502 518400
156437 645607 1573169 31457 2797679 2302297 2233547 1070017
IR14400  IR14400  |R14400 22680 IR14400  I814400 814400  3IA2ZRS00
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(A1)
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Using definition

polynomial p(r) which is given as

plry=det(r.A-—B)=10

0
00
0o

00

00

00
01
0

00
0o
0o
00

0a

L]

00

ru
0 F
00
00

(=r?+1)ré=0

Equating to zero, we then obtain the roots

9
1400
425

145152
13
14175

ol
44500

127

" 113400

* 0
=0
- 0
gLl

TaUS

TR T

149527

51 B}

33953

IO2RR00

(1.3.3)as h— O.we find out the zero stability using The first characteristics

n=ln=rn=n=r=r; =110 I?"E| < 1i=123,..8

From definition of zero stability above, it is clear that the seven step block implicit Adams-

mouton method is zero stable since the root conditions are satisfied.
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Numerical Experiment

4. Implementation Strategy Using the Block Methods
The eightstep (k=8) Adams Moulton method will be implemented in block form using the
following examples as shown below.

Problem 4.1

y =-yy(0)=10<x <1, h=0.1
Exact Solution: y(x) =e™*
Problem 4.2

y=-y*,whereh=0.1,y(0)=10<x <1

4 1
Exact solution y(x) = —

Problem 4.3:
y =—60y+10xy(0) ==, h=0.1
—-60x

Exact Solution: y(x) = é (x+ e

Table4.1: Approximate solution and Absolute Error for problem 4.1 at k=8

X | Exact Solution Error in Areo | Error in Umar | Error at
et al(2009) et al (2014) LMM k=8

0.1 | 0.904837418035960 3.60E-10 7.36E-10 5.09E-13
0.2 | 0.818730753077982 1.80E-10 4.78E-10 3.64E-13
0.3 | 0.740818220681718 5.80E-10 4.82E-10 3.58E-13
0.4 | 0.670320046035639 7.40E-10 4.36E-10 2.99E-13
0.5 | 0.606530659712633 8.10E-10 9.13E-10 3.01E-13
0.6 | 0.548811636094026 9.90E-10 6.94E-10 2.35E-13
0.7 | 0.496585303791410 9.90E-10 6.91E-10 3.08E-13
0.8 | 0.449328964117222 1.00E-9 6.17E-10 2.32E-13
0.9 | 0.406569659740599 1.10E-9 9.41E-10 1.70E-14
1.0 | 0.367879441171442 1.20E-9 7.71E-10 2.80E-14
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Figure 4.1: Error graph of problem 4.1 for Areo et al(2009), Umaru et al(2014) and Block
LMM K=8

Table 4.2 : Comparison of absolute errors arising from Areo ef al (2008) and new methods

at k=8, using problem 4.2

X | Exact Solution Block LM.M k=8 Error in Areo | Error at LMM
et al (2008) k=8
0.1 | 0.909090909090909 0.909090807813408 2.4E-04 1.013E-7
0.2 | 0.833333333333333 0.833333265801687 5.6E-04 6.753E-8
0.3 | 0.769230769230769 0.769230705535263 7.1E-04 6.370E-8
0.4 | 0.714285714285714 0.714285663006128 8.4E-04 5.128E-8
0.5 | 0.666666666666667 0.666666618560268 9.6E-04 4.811E-8
0.6 | 0.625000000000000 0.624999962888623 1.1E-04 3.711E-8
0.7 | 0.588235294117647 0.588235248106108 1.1E-03 4.601E-8
0.8 | 0.555555555555556 0.555555581966252 1.3E-03 2.641E-8
0.9 | 0.526315789473684 0.526315812592188 1.5E-03 2.312E-8
1.0 | 0.500000000000000 0.500000020968616 1.6E-02 2.097E-8
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Figure 4.2: Error graph of problem 4.2 for Areo et al(2008) and Block LMM k=8

Table 4.3: Approximate solution and Absolute Error for problem 4.3 at k=8 , h=0.1

X | Exact Solution Block L.M.M k=8 | Error at
LMM k=8
0.1 | 0.017079792029444 | 0.003734308150983 | 1.335E-2
0.2 | 0.033334357368726 | 0.032956969713152 | 3.774E-4
0.3 | 0.050000002538330 | 0.046184702563597 | 3.815E-3
0.4 | 0.066666666672959 | 0.064622773460737 | 2.044E-3
0.5 | 0.083333333333349 | 0.079738622302336 | 3.595E-3
0.6 | 0.100000000000000 | 0.098669921104349 | 1.330E-3
0.7 | 0.116666666666667 | 0.109500764193569 | 7.166E-3
0.8 | 0.133333333333333 | 0.158722474700955 | 2.539E-2
0.9 | 0.150000000000000 | 0.145534216129496 | 4.466E-3
1.0 | 0.166666666666667 | 0.164288078361483 | 2.379E-3
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SUMMARY, DISCUSSSION OF RESULT  al(2008), showed that our new method
AND CONCLUSION performed relatively better, producing lesser

. ) . error with respect to the exact solution.
In this research, we derived a ninth

order(k=8) block implicit linear multistep In conclusion, our derived method was found

methods  (Adams-Moulton }  through to be zero stable and consistent,  hence
collocation procedure, The eight-step Adams  convergent and can compete favourably with
Moulton method was found to be of order 9. existing methods for solving stiff and non-

The derived method was then implemented in stiff linear and non-linear first order ordinary
block form and was found to converge faster differential equations(0.D.E

to exact solution with minimal error. . A

comparison of the absolute error of our new

method with an existing method, Areo et
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Abstract

This paper formulates and analyze non integer derivatives of cholera dynamics model, the fractional-
order differential equation (FODE) is devised via the Caputo-fabrizio fractional order derivative. The
existence and uniqueness of the solution of proposed FODE model are examined through the fixed
point theory and an iterative method. The model disease-free and an endemic equilibrium point is
detemined. The Conditions for the existence of the endemic equilibrium point and for the local
asymptotic stability of the disease-free equilibrium point were derived. Its shows that the disease-free
equilibrium point is gradationally stable as the fractional order is decreased. Finally, the numerical
simulations for a range of fractional order at different values of alpha in all state variables were
comfirmed.

Keywords: Caputo—Fabrizio fractional order derivative; cholera epidemic model; Non-singularity;
fixed-point theorem and an iterative method.

Introduction fluid and electrolytes and severe dehydration,
The disease of dirty hands/environment is  vomiting, leg cramps and if untreated, it leads to
usually charactirize as Cholera. It is an infection rapid dehydration, acidosis, circulatory collapse
of the small intestine caused by some strains of and death within 12-24 hr [2, 9].

the bacteria called vibrio cholerae. Symptoms  Cholera can either be transmitted through
may not show up, but when one notices high interaction between humans or through
dehydration of the infected person through  interaction between humans and their
watery diarrhea that lasts a few days. This may ~ environment (i.e., ingestion of contaminated
results in sunken eyes, cold skin, decreased skin ~ water and food from the environment).
elasticity, and wrinkling of the hand and feet. ~ Vaccination has been a commonly used method
Although it is classified as a pandemic since  for diseases control and works by reducing the
2010, it is rare in developed countries. Children ~ number of susceptible individuals in a
are mostly affected especially in Africa and  Population [10]. Cholera involves multiple
Southeast Asia, in some areas where access to  interactions between the human host, the

treatment is unavailable. Vibrio Cholerae can ~ Pathogen, and the environment [10], which
survive in some aquatic environment for more contribute to both direct human-to-human and

indirect environment to-human transmission.
Due to its huge impact on public health, and
social and economic development, cholera has
been the subject of extensive studies in clinical,
experimental and theoretical fields. It remains an
important global cause of mortality and causing
periodic epidemic disease [11]. Cholera affects 3
-5 million people and causes 100,000 -130,000
deaths in the world annually and it remains a
global threat to public health and a key indicator

63

than three months up to two years living in
association with zoo-plankton, phytoplankton
and the aquatic organisms such as
bacteriophages. The Vibrio cholerae have the
ability to colonize the hosts small intestine.

Cholera is an epidemic infectious disease caused
by the ingestion of food or water contaminated
with the bacterium vibrio cholera. It is
characterized by watery diarrhea, extreme loss of
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of lack of social development [12, 14]. Modern
sewage and water treatment have virtually
eliminated cholera in industrialized countries.
The last major outbreak in the United States
occurred in 1911 [12]. But cholera is still present
in Africa, Southeast Asia and Haiti [14]. Many
cholera epidemic models have been proposed to
predict and control the spread of the disease (see,
e.g.,[2,12-14] and the references cited therein).
Mathematical model and simulationis a practical
essential tool that helps us to improve our
understanding of the real world [16]. It can help
to determine the characteristics and magnitude of
epidemic disease transmission, to predict its
outbreak and to see which parameters are more
influential in the dynamics of the disease

In recent decades, many physical problems have
been modeled using the fractional calculus. The
main reasons given for using fractional
derivative models are that many systems show
memory, history, or nonlocal effects, which can
be difficult to model using integer order
derivatives. The basic theory and applications of
fractional calculus and fractional differential
equations can now be found in many studies (see,
e.g., [15-19]). Although most of the early studies
were based on the use of the Riemann-Liouville
fractional order derivative or the Caputo
fractional order derivative, it has been pointed
out recently that these derivatives have the
problem that their kernels have a singularity that
occurs at the end point of an interval of
definition. As a result, many new definitions of
fractional derivatives have now been proposed in
the literature (see, e.g., [20-28]). The
fundamental differences among the fractional
derivatives are their different kernels which can
be selected to meet the requirements of different
applications. For example, the main differences
between the Caputo fractional derivative [16],
the Caputo—Fabrizio derivative [22], and the
Atangana— Baleanu fractional derivative [30] are
that the Caputo derivative is defined using a
power law, the Caputo—Fabrizio derivative is

defined using an exponential decay law, and the
Atangana—Baleanu derivative is defined using a
Mittag—Leffler law. Examples of the applications
of the new fractional operators to real world
problems have been given in a number of recent
papers. For example, Tateishi et al. [24] have
compared the classical and new fractional time-
derivatives in a study of anomalous diffusion.
Also, Atangana et al. have compared the
Caputo—Fabrizio fractional derivative and the
Atangana—Baleanu fractional derivative in
modeling fractional delay differential equations
[29] and in modeling chaotic systems [29]. They
found that the power law derivative of the
Riemann-Liouville fractional derivative or the
Caputo—Fabrizio fractional derivative provides
noisy information due to its specific memory
properties. However, the Caputo-Fabrizio
fractional derivative gives less noise than the
power law one while the Atangana—Baleanu
fractional derivative provides an excellent
description.

In this study, The existence and uniqueness of the
solution of the fractional model of a cholera
epidemic that includes an environment
compartment are established using fixed-point
theory and an iterative method, via
Caputo—Fabrizio fractional order derivative with
an exponential decay kernel to a cholera
epidemic model .

Preparatory of fractional order model
Recently, Caputo and Fabrizio [22] developed a
new fractional order derivative without any
singularity in its kernel which accurately
describe the memory effect in a real life problem.
The kernel of the new fractional derivative has
the form of an exponential function. More
recently, Losada and Nieto [23] derived the
fractional integral associated with the new
fractional Caputo—Fabrizio fractional derivative.
Now, let us summarize the definitions and
properties for the Caputo-Fabrizio (CF)
fractional operators as follows.

Let H'(a,b) = {f|f € L* (a,b)}, where L*(a, b) is the space of the square integrable

functions on interval (a,b).
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Defination 1.

Let f € H' (a,b) and p € (0,1) then the caputo — fabrizio fractional derivative [19] is

defined as CFy? (f(£)) = @f{:f'(x) exp l—p%ﬂ dx, (1)

1=p
where M(p) is a normalization function such that M(0) = M(1) = 1. However, if
f & L' (a,b), then the derivatives defined as
t

pM(p) t—x
2 | £ - £ exp[-p 1= a, @

CFpf (f(®) =

@
Remark 1. If we letg = l;T'ﬂfl[lil. o), thenp = 1T1L-: £(0,1)from [22], in consequence, eq. 2 can
be reduced to
CFpy (f(®))

= N[d}ff’[x) exp I—tTTx

dx, (3)

e
Where N(o) 1s the normalization term corresponding to M(p) such that N(0) = N{=) = 1.

Remark 2. ([22]) We have the following property:

lIIT[l:l = exp [— —] = &(x — t), where &(x - t) is the Dirac delta function. (4)
F—

Nieto and Losada [23] systematically modified the above Caputo-Fabrizio fractional denivative
as

CFo? (1)) = #JH yexp[-p1

Nieto and Losada [23] further l.'.‘!‘l.:l]'dCELl’l?Ed the fractional integral corresponding to the
derivative in Eq. (5) in the following form.

] ix, (5)

Definition 2. Let 0 < p < 1. The fractional inlcgral u!'ardcr p of a function f is defined by

____EL __ &
pIM(p) (2 )M( )

Remark 2. From Eq_ (6), the fractional integral of C d;mtn—F abrizio type of a function f of order
0 < p <1 is a mean between the function f and its integral of order one. Nieto and Losada
[23].that is

CRY (£(0)) = or f fDdE 10 )

2(1— 2
(1-p) 3, p _ %
E=-p)M(p) (2- p}M{p}
And therefore M(p) = _— Losada and Nieto consider M(p) = —-p and derived the new Caputo

derivative and its cumspunding integral as follows.

Definition 3. ([23]) Let 0 < p < 1. The fractional Caputo-Fabnizio derivative of order p of a
function f is given by
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t
CRof (f(1)) = ﬁ f f1(x) exp |~ i%ﬁ] dx, t>0 ®)
and its fractional integral is defined as
;
CRE (f©) = A=p)f@ +p [ fddx,  £20 9)
0

Caputo—Fabrizio fractional model for dynamics of Cholera

Let us consider the dynamics of Cholera epidemic model with environment compartment which
serves as a breeding ground for the bacteria proposed by Kamuhanda er al. [1]. In this model, it
15 assumed that the total population N(t) at time t is divided into four compartments, namely
Susceptible humans (S), Infectious humans (1 ) and Recovered vector (R) and the environment
(V ). The total population becomes: N(t) = S(t) + I(t) + R(t) + V(t) where Ny(t) = S,(t).
The population that are at risk of developing an infection from the Cholera disease are S(t); the
compartment that consists population that are showing the symptoms of the Cholera disease are
1(t); the compartment consists population that have recovered from the disease and got temporal
immunity are R(t). Now, let us consider the original integer-order model adopted from [1] as

= =0—aSl—uS+qV +¥R

= =aSl —ul - wl — & - I (10)
dR o =

E-ﬁ! pR — ¥R

I:f!—ql«"

The Susceptible humans are recruited into the population at a rate 1. Susceptible humans acquire
the disease through ingestion of contaminated foods and water. Contact with infectious humans
at a rate . Individuals recover from the disease at a rate f. Humans who are infected with
Cholera die at a rate «w and the recovered humans may loose immunity and return to the
susceptible compartment at a rate y. The natural death rate of the entire human compartments is
tt. Infectious humans contaminate the environment at a rate £ and the environment infects
humans with the bacteria at a rate of 1.

We replace the first-order time derivatives of the left-hand side of Eq. (10) by the fractional
Caputo—Fabrizio derivative defined in Eg. (5) and obtain our fractional derivative model. Now
our new Caputo—Fabrizio fractional model for dynamics of Cholera epidemic model with
environment compartment can therefore be written as follows

CFpfS =0 —aSI—puS+nV +yR
CFyPl = aSl — pl — wl — & — BI (11)
CFp’R = BI —uR — ¥R
CFpfV = &l —qV
With initial conditions
S(0) =S5, I(0) =1, R(0) =R, V() =V, (12)
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we will assume that the fractional orders (0 = pi< li=1,2,..., 4) for each of the four
populations can be different.

Existence and uniqueness of solutions of the model

Examine the existence and uniqueness of the solutions of the Caputo— Fabrizio fractional model
for dynamics of Cholera epidemic in Eq. (11) with imitial conditions (12). Using fixed point
theory [33, 34], we can prove the existence of solutions for the model as follows

Applying the Caputo—Fabrizio fractional integral operator in Eq. (6) to both sides of Eq. (11}, we
have

5(t) = 5(0) = CF,P [0 — aST — uS + nV + yR],

1(t)—I1(0) = fff"';fé[crﬂf —ul — wl — &1 — BI (13)
R(t) = R(0) = CF,{*[ BI — uR — YR],
V(£) = V(0) = CR2* (&I — V),

Then, the kernels of the model system can be written as follows

Ki(t,s) = Q—aS(t)I(t) — uS(t) + nV(t) + yR(1),

Ky(t, 1) = aS(t)I(t) — pl(t) — wl(t) — {I(t) — BI(t), (14)
K3(t,R) = Bi(t) = pR(t) = ¥R(2),

Kq(t, V) = &EI(t) —nV (1),

and the functions

2(1—p) _ 2p
@-pmip ™ aek= a

Ap) = (2—pIM(p)

In proving the following theorems, we will assume that S.LR, and V are nonnegative bounded
functions, LeLJ|S(E)| < 84, II(E)]] < 64, IR(E)|| < 85, and ||V (L)|| < 6, where
#,,0,, 85, and 8, are some positive constants. Denote
Ny=af,+y, G =af,+u+w+i+f, 8=p+y and R, =1, (16)
Applying the definition of the Caputo—Fabrizio fractional integral in Eq. (6) to Eq. (13), we
obtain.
t
() = S(0) = ApK(5,5) +800) | Ki(,5)dy,
]
1(£) = 1(0) = A(p)Kx(8,1) + Alpy) J, Ko (v, 1Dy (17)
t
R(®) = R(O) = Mps)Ks (6 R) +AGp5) [ K0 Ry,
[}

t
V(£) = V(0) = A(py)K4 (2, V) + Apy) f K,(y,V)dy,
]
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Theorem 1. If the following inequality holds 0 < M = max {N;, X;, 83, ¥} < 1, (18)
then the kernels K, K5, K5, and K, satisfy Lipschitz conditions and are contraction mappings.

Proof. We consider the kernel K. Let S and §; be any two functions, then we have

||H1{f: 5)— K, (t, SI}” = ||_‘If[t){5{r} —5:(t)) —u(St) - 5 {t])” (19)
Using the triangle inequality for norms on the right-hand side of Eq. (19), we obtain

1K, (¢, 8) = K1 (&, SOl < [|[=al()(St) = $,(O)|| + [lu(S(®) = $:(0)]| < (alli(O)]] +
WINIS(E) = S (Ol = (@b + ) IS(E) — Sy (O] = Ry |IS(e) — S, (l. (20)
Where ¥; 1s defined in Eq. (16). Similar results for the kernels K;, K3, and K, can be obtained
using {/,1,} . {R, Ry }and {V, V; }, respectively, as follows:

1K, (8, 1) — Ko (e, 1) < R l[1(t) — L (D]
I1Ka(t, R) — K3(t, Ryl < Nal|R(E) — Ry (O]
| K, (t, V) = Ky (t, VIl = RV () = V()
where ¥, ¥;, ¥5 and ¥, are defined in Eq. (16). Therefore, the Lipschitz conditions are satisfied
for K3, K3, and K;. In addition, since 0 <M = max {¥;, N;, X3, ¥,;} < 1, the kernels are
contractions. From Eq. (17), the state variables can be displayed in terms of the kernels as
follows:
t
S(0) = S0 + AP K, (.5) + AGpy) [ K S)ay,
(]
1) = 10) + A(p2) Kz (8, 1) + Alpa) J, K2 (v, Dy (21)

[
R(D) = R(0) + Aps)Ks(t, R) + Alps) f Ky(y, R)dy,
0

t
V(E) = V(0) + Aps)Ka(t, V) + Mmf K,(y,V)dy,
0

Using Eq. (21), we now introduce the following recursive formulas:
t
$2(0) = AR 6.500) + Apy) [ K 0rSy1)dy,
0
I,(t) = A(p ) K (¢, 1) + E‘.{pz}j‘{f Ko(y, I_1)dy (22)

Ro(t) = A(ps)Ks (6, Ru-1) + A(p3) f K (¥, Ru_y)d,
i}

Va(©) = Apa)Ka (b, Vos) + Aps) f Ky, Vo1 )dly,
&)

The mitial components of the above recursive formulas are determined by the given initial
conditions as follows:

So(t) = S(0), I, () = 1(0)
Ry(t) = R(0), Vy(t) = V(0) (23)

The differences between the consecutive terms for the recursive formulas can be written as
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P () = 5,(t) — 5,4 (1) a
= AP (6 Snr) = Ka6:5020) +8060) | (a3, Sns = Ka(6.50-))d,
i

‘i’n{[) = ;:1{1) = I'n:—t{.r-)
= Apa ) (Ko (t, Iy—1) — Kp(t, I, 2))

+A(py) f *, (9, Iyer = K (8, 1y-5) )y (24)
Pa(t) = Ry(t) — Ry () ;

= A(p3) (K3(t, Rn—1) — K3(t, Ry—2)) + Alps) f (K3(y, Ry — K3(t, Ry_3))dy,
D, (1) = Valt) = Vo (8) ;

= M) (Kot Vo) = Ky(t, Vo)) + A(p5) f (Ka(3, Vs = Ka(6, V) ),

For S,(t) = X i(6), a(t) = Xis, ¢i(t)
R () = Zis; 0n, (1), Va(t) = Xin; @i(t) (25)

Now let generate the recursive inequalities for the differences i, (t), ¢, (t), ¢, (t)and D, (t) as
follows

||1Pn|:t.} | = ||Sn{'t} = Sp-1 (3]
= ”ﬂ(ﬂﬂ(fﬁ(ﬁran] — Ky(t,Sy-2))

t
+ ﬂ-(.ﬁhjf (K, (}"- Sn=1— K1{i.5,1u1]}£f}1H (26)
0

Using t triangle inequality for norms to Eq. (26), we have
1Sn(£) = Sp_1 (O]
= [lACo) I Ky (8, i) = Ko (8, Sy2)l

+ ﬂ(ﬂi)frllffl(%&l-l) — Ky (t, Sp-2) lldy
Then, since the kernel K, satisfies the L:i]w.:nhit? condition with l.ipsc{hitz constant ¥, we have
1406 = Suca (O < 1AL 1 S33 = Sacall+ ANy [ 1Sy = Sucalldy
therefore we have E ’
i (Ol = Alp )Ry [ (O] + ﬁ(ﬁ;)ﬂlf 14— () |l dy (27)

Following the same procedures we have =

lpn (Ol = Alp2)Rzll@pn—1 (O + Alp2)N; fllm-liﬂlld}’

llen (Ol < Alp)Rsll@n_1 (O + Aps)Rs futlgwnhity:rudy (28)

[P (N = Alpa) Ryl Py (O] + ﬂ(mJML ;-1 (¥)Ildy
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Theorem 2. If there exists a time t, > 0 such that the following inequalities hold: A(p,)8; +
A(p) Ritg > 1, fori=1.2,...4, (29)

then a system of solutions exists for the fractional cholera model (11)—(12).

Proof. Since the functions S(t), 1(t), R(t), and V(t) are assumed to be bounded and each of the
kernels satisfies a Lipschitz condition, the following relations can be obtained.
Using Eqgs. (27)—(28) recursively:

1 @I < ISO)I[[A(p1)R; + Alp)R4]™
llgn (Nl < [ITCO)]| [A(p2)R, + A(p2)R,]"
llen (1 < IRCO)II[A(p3)R; + A(p3)R5]" (30)
@Rl < IV(O)I[ACP4)Rs + Alpa)R4]"

Equation (30) shows the existence and smoothness of the functions defined in Eq. (25). To
complete the proof, we prove that the functionsS,(t),I,(t), R,(t) and V,(t) converge to a
system of solutions of (11)—(12). We introduce B,,(t), C,,(t), E,(t), and F,(t), as the remainder
terms after n iterations, i.e.,

S(t) — S(0) = S, (t) — Ba(0),

1(8) = 1(0) = I,(t) — Cu(2) (31)

R(t) — R(0) = R, (t) — Ex(0),

V(t) —V(0) = Vo (t) — F, (D),
Then, using the triangle inequality and the Lipschitz condition for K;, we have

1B (Ol = [|Alor) (Ka (&, 9) = Ky (&, Sn-ny)) + A1) [y (K (7, S) = Ky (3, 1))y | <

Alp)II(K1(t, ) = Ky (¢, Sn-0 Il + A(p1) f;llfﬂ ,8) = K1(v, Sn-1lldy < Alp IR, [|S =
Sn-1ll + Ap1) R Bo (DS = Sp-alt.

Repeating same process we have;

1B, (Ol < [(Alpy) + Alp) )R]0, (32)
At ty we have || B, (£l < [(A(py) + Alp)to)Rq]™416, (33)

Taking the limit on Eq. (33) as n = oo and then using condition (29), we obtain ||B,(t)|| = 0.
Using the same process as described above, we have the following relations:

I1C, (Ol < [(Alp2) + Alpy)to)R,]" 16, (34)
IE.(OIl < [(Alp3) + A(p3)to)R3]™ 16, (35)
IE, (Ol < [(Alps) + Alpa)to)Ra]™t16, (36)

Similarly, taking the limit on Eqgs. (34)-(36) as n — oo and then using condition (29), we have
1C, (O] = 0, ||E,(t)]| = 0 and ||E,(t)|| = 0. Therefore, the existence of the system of
solutions of system (11)—(12) is proved.

We now give conditions for the system of solutions to be unique.
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Theorem 3. System (11) along with the initial conditions (12) has a unique system of solutions if
the following conditions hold: 1 — A(p; )N; + A(p)¥;t = 0, fori=12 .4, (37).

Proof. Assume that {5;(t),[,(t), R (t) , Vi(£)} is another set of solutions of model (11)-(12) in
addition to the solution set {§(¢t), I(t), R(t), V(t),R(t), V(t)} proved to exist in Theorems |

and 2 then

S(£) = 51(t) = Alpy) (K (£,5) — Ky (£, 51) + Apy) f, (Ka (3, S) — Ky (3, 51))d, (38)

Taking the norm and triangle inequality on both sides of Eq. (38), we have

IS = 501l < Alp) 1K1 (£, S) = Ka (6, SN + Bpy) LI (K3, = K SOl (39)
Using the Lipschitz condition for the kernel K, we find

IS(2) = S; (O] = Alp IR 1IS(E) = S (O] + Alp )R tlIS(E) = S (D] (40)
If Eg. (40) rearranging we obtain

IS(8) = S (O — AlpdR; + AlpIRit <0 (41)

Finally, applying condition (37) fori =1 to Eq. (41). we obtain

I5(t) = S ()]l =0 (42)

Hence S(t) = §;(t).
Applying a similar procedure to each of the following pairs

(I(t), 1, (£)), (R(t), Ry (8)) ,and (V(t),V,(t)).
with inequality (37) fori = 1,2, ...,4, respectively, we have

I1(t) = 1,(t), R(t) = Ry(¢t) ,and V(t) = V(1). (43)
Thus, the uniqueness of the system of solutions of the fractional order system is proved.

Equilibrium points of the model and asymptotic stability

We can determine the equilibrium points of the fractional order system (11) by equating its right-
hand side to zero. Solving the resulting algebraic system, we obtain two equilibrium points,
namely, a disease-free and an endemic equilibrium point, which are the same as the equilibrium
points given in [1].Let E? = (89 I° R%, V") denote the disease-free equilibrium point of the
model and E* = (§°, 1", R*, V") denote the endemic equilibrinm point of the model. From [1], we
have the disease-free equilibrium point given as

E® = (5°0,0,0) = (% 0,0,0) (44)

and the endemic equilibrium point given by
o _ lptetf+fy o, (PHEIRT
S e " =—,

f
R = (el +,::IE- —ﬂ‘ s %(}w;}ﬂ (45)
Now using the next generation matrix method [33, 34], the basic reproduction number Ry, 1s
Ro=2_(u+w+&+p) (46)

u
For Ry < 1, the disease free equilibrium point is locally asymptotically stable. And we can
observed that the unique endemic equilibrium point E* exists if Ry = 1.

Consider the following fractional-order linear system described by the Caputo—Fabrizio
derivative.

FDP ) = axo) (47)
Where x(t) ER", AER™" D<p < 1.
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Definition 4. ([37]) The characteristic equation of system (47) 15
det(s(1—(1—p)A)—pd) =0
(48)
Theorem 4. ([37]) If (s(1 — (1 — p)A) — pA) is invertible, then system (47) is asymptotically
stable if and only if the real parts of the roots to the characteristic equation of system (47) are

negative.
The linearization matrix of model (11) evaluated at the disease-free equilibrium point E? is
—arfl
—u . U
0
jEy=| ==—(utw+i+p) 0 0 (49)
0 § -n 0
f 0 =(@r+uw

Let py, = ps = p3 = py = pe(0,1) be the commensurate order of model system (11), therefore,
the linearization of model system (11) has the following characteristic equation at E¥:

det (s(1— (1 - p)J(E®) — pJ(E®)) = 0 (50)

Theorem 5. The disease-free equilibrium point E? of model (11) with a commensurate order
pe(0,1) is asymptotically stable if and only if real parts of the roots of the characteristic equation
{50) are negative.

Proof. Equation (50) is a quartic/bi-quadratic polynomial equation. Then we denote its four roots
by 54, 5,, 53 and 54. However, the first two roots of Eq. (50). Are as follows:

= py + 1) oo B
(p—-Du+(-1y""7% (p-Du-1

51

The two roots of Eq. (50), 5, and 55 is obviously negative because 00 < p < 1. Then 53 and s,
can be found from the following equation

et (|_g1— pye - pp 1)) =0 1)

Where a = s(1 — (1 —p](?—ﬁ-m-f-ﬁ))—ﬂ(ﬂ"#—m—f“ﬁ’).

[

b=s(1-(1-p)m)—ph). (52)
Given R.(s3) < 0 and R.(s4) < 0, this implies that the real parts of the two roots of Eq. (51)

are negative, by Theorem 1 the equilibrium point E® of model system (11) is asymptotically
stable.
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Numerical computation

The numerical results and simulations of the extended fractional order mathematical model in
equation (11) was achieved with the help of the derived algorithm and numerical coded written
in MATLAB environment using the model equations and the values of the parameters as
Q =0.000096274, [ = 0.00002537, @ = 0.0004, B =5, & =10 , n = 0.075, @ =0.011 and y =0.002.
The extended fractional order mathematical model where solved numerically using the
Garrappas code FDE PI12 accordingly; [38].
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Figure 1 The time series plots for cholera dynamics in model (11)
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Discussion theorem and an iterative method, was

In this paper, the dynamics of cholera model establisheb an important properties of our
are examined via Caputo—Fabrizio fractional proposed FODE model.

order differential equation model approaches:.

Varying the values of fractional-order « for Conclusions

the FODE, Due to the lack of any disease In this paper, a Caputo-Fabrizio fractional
control measures, the number of subceptable  differential equation model for dynamic of
and infected population dramatically  cholera has been developed and analyzed,
increases (see Figure 6 and 7), since both the Using fixed point theory and an iterative
susceptible and infected population live method. This fractional model is based on the
together in the environment that serves as a use of the non-singular exponentially
breeding ground for the bacteria and actively decreasing kernels appearing in the Caputo

interact among themselves. Moreover, we can Fabrizio fractional derivative; the existence
easily observe from Figure 6 and 7 that when  and unigueness of the system of solutions for
a — | the Caputo—Fabrizio non-integer order the model have been obtained. We have
denivative reveals more absorbing determined the equilibrium points of the
characteristics, Consequently, this causes the model and the conditions for local asymptotic
cholera dynamic to stay at almost a constant  stability of the disease-free equilibrium point.
rate for a long period of time (see Figures We obtamed numerical solutions of the
1.2.3.4 and 5). However., the Effects of fractional system, and compared the
increasing or decreasing infectious contact numerical simulations with respect to
with environment in model (11) at different different values of the fractional order and
values of alpha in figure 9 indicate the  explored the mechanism of the use of the
vulnerability of all state wvariables. The  Caputo-Fabrizio fractional derivative as a
Determination of existence and uniqueness  model for description of real life problems
solution of the model through the fixed-point that include/ and relate memory effect.
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Abstract

In the theory of statistical analysis, it is indisputable to state that the flexibility of statistical
distributions are enhanced through the addition of extra parameter(s). Several methods have been
introduced in literature. Nevertheless, not all methods are suitable to enhance the flexibility of existing
models.In this paper, we present a comparative study on the alpha power family of distributions. More
specifically, the Weibull, log-logistic, Bur Il, power4Lindley, Gompertz distributions, and their
corresponding alpha power transformed versions are studied. Some of the mathematical properties of
the distributions are discussed and three real data sets were used to examine the effect of the extra
parameter in the alpha power transformed method on the baseline distributions.

Keywords: Alpha power transformation; Hazard rate function; Quantile; Moments

Introduction

Generalization of classical lifetime distributions
have become a significant interest among
statisticians due to their usefulness in statistical
analysis of real-world phenomena. Over
decades, several methodologies have been
introduced to add extra parameter(s) to existing
models with the sole aim of increasing their
performance and flexibility in real-life data
fittings. Included among the methodologies are;
the exponentiated Weibull family of
distributions introduced by Mudholka and
Srivastava (1993), the beta-generated family of
distributions due to Eugene et al. (2002), the
Marshall-Olkin extended family of distributions
developed by Marshall and Olkin (2007), the
transmuted-G family of distributions introduced
by Shaw and Buckley (2009), the Weibull-G
family of distributions proposed by
Bourguignon et al. (2014), Kumaraswamy-G
family of distributions due to Cordeiro and de
Castro (2011), the Topp-Leone generated family
of distributions proposed by Al-Shomraniet al.
(2016), the alpha-power poisson-G family of
distributions developed by Jemilohun and
Ipinyomi (2022), etc.

Recent research study has shown in many cases

81

the usefulness of these methods in improving the
flexibility of existing lifetime distributions.
However, it is imperative to note that some of
these methods are not suitable for certain lifetime
distributions.

In this paper, we are motivated to conduct a
comparative study on the alpha-power
transformed family of distributions developed
by Mahdavi and Kundu (2017). Primarily, we
investigate the effect of the “a-parameter” on
some classical lifetime distributions. The
remaining sections of the paper are structured as
follows: Section 2 presents the alpha-power
transformed method and a brief review of some
generalized lifetime distributions based on the
alpha-power transformed frame work. In Section
3, we applied the generalized lifetime
distributions to fit three real data sets in other to
examine the effect of the “a-parameter” on the
generalized lifetime distributions. Section 4
concludes the paper.

The Alpha-Power Transformed Family of
Distributions

Mahdavi and Kundu (2017) have introduced a
novel method of adding an extra parameter to an
existing lifetime distribution. Suppose F(x) is the
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cumulative distribution function, (cdf) of a Kundu (2017) defined the alpha-power
continuous random variable X following a  transformation of F(x) forxJ Ras
known lifetime distribution, Mahdavi and

(= I.-: . .: I' : |-_.i|- ey = L), ¥ r_r" ]
Crapr(c) = (1)
Fila). i o = 1

The probability density function (pdf) associated to (1) is obtained as

L-gj'{_,-]n!"'-“_ if a>0, ezt

gapriz) = (2)
fiz), i f vy = 1
The following subsections is dedicated to a brief review of some generalized lifetime distributions
arising from (1) and (2).

The Alpha-Power Weibull Distribution (APWD)
Let F(x) be the cdf of a two-parameter Weibull random variable X. Nassar et al. (2017) introduced
the alpha-power Weibull distribution with the cdf and pdf respectively defined as

;I' if a>0, a#l
(7 apwlx) = 4 3
and ' T Wooe=l
lou(o) AgaB-1e=2="q1=¢*"  if a0, a #1
gapwir) = @
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The survival and hazard rate functions of the APW distribution are respectively obtained from (1) and (2) as

s
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Mathematical properties such as quantile,
moments, entropy, order statistics, mean residual
life function and stress-strength parameter were

The Alpha-Power Transformed Log-Logistic
Distribution (APTLLD)
Suppose X is a random variable following the

also obtained. The maximum likelihood method log-logistic distribution with cdf and pdf defined
was employed to estimate the unknown as

parameters and two real data sets were used to I
demonstrate the importance of the APW T Ty
P Flz)=1={1+ [] ) x>0
A
. 2
9 9 i
and - pip) = BXPd! (I + (I) ) x>0 ®)

distribution in real-life data fitting.
Aldahlan (2020) developed the alpha-power transformed log-logistic (APTLL) distribution by inserting (7)
and (8) into (1) and (2), yielding

G aprrelx) = 4
9)

and

I.JF a >, o ;"—r 1 (10)

gaprrile) = 9

(9) and (10) respectively represent the cdf and pdf of the alpha-power transformed log-logistic (APTLL)
distribution. From (9) and (10), the survival function and the hazard rate function of the APTLL distribution are

given resnectivelv as .
.|I- " ]
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=S 1 — {1 #
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Other mathematical prope

rties which include, the quantile, moments, probability weighted moments (PWMs),

Renyi entropy, order statistics were derived. As a way of illustrating the flexibility of the APTLL distribution,
one data set was used in data fittings. Although, the author compared the result of APTLL distribution with other

non-nested models, the res

ult of the log-logistic distribution which is apparently the baseline distribution of the

proposed APTLL distribution was omitted.

The Alpha-Power Transformed Extended Bur 11 Distribution (APTEBIID)

Ogunde et al. (2020) introduced a new three parameter generalized Bur 11 distribution based on the alpha-power
transformed method. By inserting the cdf and pdf of the Bur Il distribution into (1) and (2), the authors obtained
the cdf of the alpha-power transformed extended Bur Il distribution as

(1+==2)"7 _,
— ] s i a>l, az*
Gaprepiic) = 4 (13)
o 1 ' :
! {l g ]I if x = ]
and the corresponding pdf associated with (13) is defined as
1 o] o ) [ |5+ | A ,
:]lll—"”.l' W 1 4 2 "") Irl[ s, if a=>0 a#l
a=1 \ .
JAPTERIIIT) = (14)
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| ABz=AHh (] 4 =) if a=1
The survival and hazard rate functions of the APTEBII distribution are respectively obtained as
f i
P { 142—") - - o
.';.'"-J(l A I)- if a>0, o]
; (15)
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\ 1 — (14+274) if a=1
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and
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Mathematical expressions for the quantile, moments, moment generating function, Renyi entropy, order
statistics were derived. The maximum likelihood estimation method was employed to estimate the parameter of
the APTEBII distribution and two real data sets were used to illustrate the applicability of the model.

The Alpha-Power Transformed Power Lindley Distribution (APTPLD)
Ghitanyet al. (2013) introduced an extension of the one-parameter Lindley distribution proposed by Lindley

(1958). They defined the cdf and pdf of the power Lindley (PL) distribution respectively as

.r1ll.. '“I ¥
Flz)=1-— (l o _'r_ l) =M s o S e 17)

and

N
L BA” By (19
A4 1
By inserting (17) and (18) into (1) and (2), Hassan et al. (2019) developed the alpha-power transformed
power Lindley (APTPL) distribution with cdf defined as
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and the associated density function given by
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The survival function and the hazard rate function of the APTPL distribution are given, respectively as

follows
( AT
I:.l_!.i (j O {I '|-|} ). ‘l._ir o =) ”'___1!': |
; 21
sapreL(T) = o (1)
| ) e
[ logla) B i LR Azt . . .
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.'_l_il][u' A+T ) l)
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FAspi—l [I O '.:|' J' I;
- | | N =
(A+ 1+ Ar®)

The authors presented a detailed study on the mathematical properties of the APTPL distribution. These include;
the quantile, moments, moment generating function, probability weighted moments, incomplete moments,
Bonferroni and Lorenz curves, Renyi entropy, and stochastic ordering. Four different methods of parameter
estimation which include; the maximum likelihood, maximum product spacing, least square and weighted least
square estimators were employed to estimate the unknown parameters of the APTPL distribution. The potential
ofthe APTPL distribution in real life data fitting was demonstrated using two data sets.

The Alpha-Power Gompertz Distribution (APGD)
Let X be a continuous random variable following the Gompertz distribution, then the cdf and pdf of X are
defined, respectively as

St A 8 : (23)
) - |—r.e;r(—E(! —l)). T A

and
o) — Nern [ B — 2 (B2 \ . (24)
flx) = Aexp (.'.u = (4 - I}) ; T3 A

Eghwerido et al. (2020) utilized (23) as the baseline distribution in (1) to develop the alpha power Gompertz
(APG) distribution. The cdf of the APG distribution is given as

if a>0, a#l

G apctiz) 4 (25)
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and the pdf given by
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The survival function and hazard rate function of the APG distribution can be obtained respectively as
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Other mathematical properties studied by the authors include; the quantile, moments, probability weighted
moments, moment generating function, entropy, moments of residuals and reverse residual life function, and
order statistics. The maximum likelihood estimation method was employed to estimate the unknown parameters
of the APG distribution. The flexibility of the APG distribution was analysed by means of two real data sets.

iF ae=1

DataAnalysis

In this Section, we fit three data sets using the Weibull distribution (WD), log-logistic distribution (LLD),

Bur Il distribution (BIID), power Lindley distribution (PLD), Gompertz distribution (GD) and their

corresponding alpha-power transformed versions.

Data set 1:

The first data set consist of uncensored data reported in Nicholas and Padgett (2006) on the breaking stress of

carbon fibers (in Gba). The data are given below: 3.70, 2.74, 2.73, 2.50,

3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 3.56, 4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.90, 1.57, 2.67,
2.93, 3.22, 3.39, 2.81, 4.20, 3.33, 2.55, 3.31, 3.31, 2.85, 1.25, 4.38, 1.84, 0.39, 3.68,

2.48,0.85,1.61,2.79,4.70,2.03,1.89, 2.88, 2.82, 2.05, 3.65, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96,

2.35,2.55,2.59,2.03,1.61,2.12, 3.15,1.08, 2.56, 1.80, 2.53.

Data set 2:

The second data set represents the waiting times (in minutes) before service of 100 bank customers.

Ghitanyet al. (2008) used the data set to illustrate the flexibility of the Lindley distribution over the

exponential distribution in real life data fitting. The data set is as follows: 0.8,0.8,1.3,1.5,1.8,1.9,1.9, 2.1,

2.6,2.7,2.9,3.1,3.2,3.3,3.5,3.6,4.0,4.1,4.2,4.2, 4.3,

e
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43,44,44,46,47,4.7,48,49,495.0,5.3,55,5.7,5.7,6.1,6.2,6.2,6.2,6.3,6.7,6.9,7.1,
7.1,71,7.1,7.4,7.6,7.7,8.0,8.2,8.6,8.6,8.6,8.8,8.8,8.9,8.9,9.5,9.6,9.7,9.8,10.7,10.9,
11.0,11.0,11.1,11.2,11.2,11.5,11.9,12.4,12.5,12.9,13.0,13.1,13.3,13.6, 13.7,13.9,14.1,
15.4,15.4,17.3,17.3,18.1,18.2,18.4,18.9,19.0,19.9, 20.6, 21.3,21.4,21.9, 23.0, 27.0, 31.6,

33.1,38.5.

Data set 3:

The third data set is the records of 72 exceedances of flood peaks (in m*/s) of the Wheaton river near Carcross
in the Yukon Territory, Canada for the years 1958-1984. Choulakian and Stephens (2001) used the data set to
illustrate the performance of the generalized Pareto distribution. The data set obtained as follows: 1.7, 2.2,
14.4,1.1,0.4,20.6,5.3,0.7,1.9,13.0,
12.0,9.3,1.4,18.7,8.5,25.5,11.6,14.1,22.1,1.1,2.5,14.4,1.7,37.6,0.6,2.2,39.0,0.3,15.0,
11.0,7.3,22.9,1.7,0.1,1.1,0.6,9.0,1.7,7.0, 20.1, 0.4, 2.8, 14.1, 9.9, 10.4, 10.7, 30.0, 3.6, 5.6, 30.8, 13.3,
4.2,25.5,3.4,11.9,215,27.6,36.4,2.7,64.0,1.5,2.5,27.4,1.0,27.1,20.2,16.8,

5.3,9.7,27.5,25, 27.0.

Statistical results for the three data sets are displayed in Tables 1 - 3. The ranking of the distribution is based
onthe distribution having the least K- S value and the highest p- value.
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Table 1: Statistical results for data set 1
Distributions Estimates AlIC K-S p -value  Rank
WD p=34409 A 86.0676 176.1352 0.08823 0.7625 4th
= 00212 ¢ =
2785.7791
APWD f=23183 21 108.0827 222.1654 0.1888  0.0180 9th
=(.8459
LLD 91.6452 187.2905 0.0937 0.6071 5th
B = 4.8964
A= 27108
a=24036
APTLLD f=48466141 916168 189.2336 0.0943  0.5997 6th
= 2.4824
EBIID 110.0637 224.1273 0.1940  0.0138  10th
fi=5.8453 A
= 2.2416 a =
346.1171
APTEBIID f=21797 4 100.3059 206.6118 0.1523  0.0936 8th
= 2.9462
PLD 85.8055 175.6111 0.0789  0.8047 3rd
f = 2.5100
A=0.1240 «
=11.4166
APTPLD f=20258A4 85.0986 176.1974 0.0662 0.9341 1st
=0.3081
GD 88.0883 180.1767 0.1119  0.3798 7th
B = 1.0708
A = 0.0372
a=0.0184
APGD p=13876 A4 85.5447 177.0895 0.0761  0.8391 2nd
= (0.0052
Table 2: Statistical results for data set 2
Distributions Estimates AlC K-S p-value  Rank
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WD f = 14587 318.7307 6414614 0.0577 0.8926 5th
A=0.0304 a
=98.3616
APWD f=14876 A4 326.3056 658.6111 0.0842 04777 7th
=3.0765
LLD 319.4098 642.8196 0.0508 09581 2nd
f = 22667
A= 7.8153
a=0.9981
APTLLD f=22676 1 319.4098 644.8196 0.0509 0.9577 3rd
=7.8184
EBIID 330.4268 664.8536 0.1027 0.2421 9th
f = 8.8671
A=1.2899 ¢
=60.4239
APTEBIID p=43722 2 3243901 654.7802 0.0755 0.6174 6th
=1.2899
PLD 318.3186 641.2372 0.0519 0.9501 4th
B = 1.0831
A= 0.1530
a=10.1535
APTPLD f=11678 1 317.5037 641.0075 0.0448 0.988 1st
=0.0861
GD 323.9756 651.9512 0.1059 0.212 10th
£ = 0.0408
A=0.0714
a=0,0092
APGD f=0.081021 3225371 651.0742 0.0885 0.4135 8th
=0.0131
Table 3: Statistical results for data set 3
Distributions Estimates -LoglL AlC K-S p -value  Rank
WD f = 09010 251,4986 506.9973 0.1052 0.403 2nd
A=0.1095 a

=64.5115
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APWD f=080811 2626387 5312774 0.1451  0.0965  9th
=0.7129
LLD 257.8391 519.6782 0.0.1138 03092  4th
B = 12127
A = 6.7586
a=1.0007
APTLLD p=121251  257.8391 521.6782 0.1139 03083  5th
= 6.7542
EBIID 262.1533 5283067 0.1542  0.0652  10th
p = 3.1728
A=0.8361a
=13.0168
APTEBIID B=172271 259988 5259761 0.1384 0127  7th
=0.9763
PLD 252.2218 508.4436 0.1050  0.4051  1st
B = 0.7001
A = 0.3385
a=13272
APTPLD p=0.68621 2521909 5103817 0.1069 03829  3rd
= 0.3682
GD 252128 508.2559 0.1422  0.1086  8th
f=-2.624 x10-61
=0.0082 a =
0.3473
APGD B=0.00961 2516557 509.3114 0.1286  0.185  6th
=0.0554

Tables 1-3 present the parameter estimates, log-likelihood (-LogL), Akaike information
criterion (AIC), Komolgorov-Smirnov (K -5) test statistic and its corresponding p -value, and
the ranking of the distributions for the three data sets. Empirical findings reveal that the
additional parameter from the alpha-power transformed method has a negative effect on the
Weibull and log-logistic distributions and a positive effect on the Bur ll, power Lindley and
Gompertz distributions.

This is evidently clear, as the Weibull and log-logistic distributions ranked higher than their
alpha-power transformed version. Conversely, the alpha-power transformed version of the
Bur II, power Lindley and Gompertz distributions ranked higher than the baseline
distributions. These results are consistently true for the three data sets, except for the power
Lindley distribution in the third data set which was ranked higher than the alpha-power
transformed power Lindley distribution.
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Conclusion hazard rate functions were discussed. In other to
Acomparative study on the alpha-power transformed examine the effect of the “a-parameter” on the
family of distributions has been considered in this lifetime distributions, we obtained the fit of the

paper. Five classical lifetime distributions which distributions for the three data sets. Empirical
include; the Weibull, log-logistic, Bur Il, power findings based on the data sets revealed that the “a-
Lindley and Gompertz distributions and their parameter” had a negative effect on the Weibull and
corresponding alpha-power transformed versions log-logistic distributions and a positive effect on the
were treated as case studies Mathematical properties Bur I, power Lindley and Gompertz distributions.

of the distributions such as the cdf, pdf, survival and
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Abstract
Coronary heart disease progresses when the coronary arteries that supply oxygen to the heart muscle
develop constricted or congested as a result of the accumulation of plaque, a waxy constituent, inside
the lining of larger coronary arteries build up, within the arterial wall. A fractional order
mathematical model of the dynamics of disease is developed in this paper. The epidemic thresholds and
equilibria for the model are determined and stabilities analyzed. Results from the analysis of the
reproduction number propose that treatment will somehow contribute to a decrease in disease cases
and reduction in death rate of the infectivity. This result recommends that, the control of the disease
should lie more on treatment and public health education. Numerical simulations show the dynamics of

the transmission of disease.

Keywords: Fractional Order, Coronary Heart Disease, Mathematical Modelin

Introduction

Coronary  heart disease (CHD) egually
recognized as Coronary Ariery
Disease, Coronary Micro vascular

Disease, Coronary X Ischemic
Heart

Artery disease, and Obstructive Coronary

Syndrome
Disease, Non obstructive Coronary
Artery Disease. It 1s regularly triggered by the
collection of plaque, a waxy substance, inside
the lining of larger coronary arteries. This
accumulation can partly or wholly block
blood flow in the large arteries of the heart.
Certain forms of this disorder might be
instigated by disease or damage affecting how
the arteries work in the heart [1.]

It is the main cause of death universally. At
the beginning of the 20th century, it remained
an uncommon cause of death. Deaths
resulting from CHD was at 1t peaked in the

94

mid-1960s [2]and then declined nevertheless,
it remains an outstanding universal public
With

losses annually redited to CHD. It is the

health concem. over seven million
foremost reason of death universal, a main
source of debility, and a substantial economic
liability [ 1&3]. Over half a century, numerous
main risk factors have been acknowledged,
such as smoking, diabetes, and high levels of
blood pressure and low density lipoprotein
cholesterol (LDL-C) [3&4]

The high morbidity and death associated with
the infectivity can be avoided, if it's promptly
sSigns of the
disease may be different from person to

acknowledged and treated.

person even if they have the same type of

coronary heart disease. However, because

many people have no symptoms, they do not
know they have coronary heart disease until
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they have chest pain, a heart attack, or sudden
cardiac arrest [4].

Natural phenomena can be more accurately
explained using the fractional order models
than the differential equations of the integer-
order as asserted by some scientists, over the
last few decades. The fractional calculus has
taken on the significance and acceptance of
modeling realistic cases, particularly those
with memory effects [5]. Additionally, its
application 1s employed in numerous fields of
social sciences, engineering and biology [5].

Many literature [5-11] investigated the control
of the disease using fish consumption to
reduce the infectivity. In the present work, the
innovations with respect to the existing
literature are exposed and recovered classes.
The key objective of this work is to use the
new fractional order to develop a model for
Coronary Heart Disease and using Laplace
Adomian  Decomposition  Method  for
numerical solution. The development of the
paper is organized into six sections. The
model describing the diseases transmission
formulated and its analysis: the general
procedure of the model using the Caputo
fractional derivative system is discussed.
Differential Transform Method was discussed
and analyzed to the
Numerical results illustrating the analytical
results and the conclusion.

compare results.

%’} = A—(zk(1)- p)S(e)+ OR
EW) _ (OB (8 + 1)EC)
“’:TE’:!;SEU}—UH.H.. +ﬂ+ﬂ=‘m
%ﬂf} = —(u+S)R(1)
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The Model Formulation

The total human population at time , denoted
by NIIL is sub divided into the sub-
populations of susceptible individualsS{7),
those exposed to the disease E(¢). Individuals
infected with the disease [ I[r] and finally
those that recovered from the infectivity R{:}.
S0 that

N(t)=S(t)+ E(t)+ I{z)+ Rlt)

The susceptible population Sl¢)is increased
as a result of birth and immigration at a rate A
o .
individuals are exposed through risk factors
which includes: (a sedentary lifestyle, lack of
physical activity, poor diet, being overweight
or obese: drinking alcohol. high blood
pressure, tobacco use [5] at a rater. The

and recovery at a rate

Susceptible

exposed class progress to the stage /(1) of the
infectivity at a rateff. And the classes
decreases due to natural death at a rate i . The
recovered class increase as result of recovery
after medication from the infected class and
decrease as a result of loss of immunity back
to the susceptible class. And death due to
infectivity at the infected class at a rateu,.
The

description above give rise to the following

above mentioned assumptions and
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The associated model variables and parameters are described in Table | and 2 below

Preliminaries

Definition 1. The Caputo fractional order derivative of a function y on the interval [0, T] 1s
defined by

‘DI t)= . j{r s) s )ds (2)

wheren =[a ]+ and [a] represnt the Integer part of o

The Riemann-Liouville derivative has certain disadvantages such that the fractional derivative of
a constant is not zero. Therefore, we will make use of Caputo’s definition owing to its

convenience for initial conditions of the fractional differential equations [5].

Definition 2. Laplace transform of Caputo derivative as
f_{ : D"j'{.’]: =s"y(s i—z.\'" » '_1':“{{}}. n—l<a<n ne N.

The new system of the differential equation 1s represented by the fractional system of differential
equations 1s given as follows.

D“8(t)= A —(cE(t)— 12)S(¢)+ OR

DE(t)=tS(¢)E(¢)— (8 + 1 )E(t)

DI(t)= BE(t) -t +pu, +a + y)I (3)
D“R(t)=yl (1 +6)R(1)

Wherever, a< (0,1] whilst all other parameters are positive parameters and the given initial

conditions are

' S(0)=N,

!. E{ﬂ} = -'."'"l:

' 1(0)= N, SR
|R(0)=N,,
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Stability Analysis and Equilibria
Disease-free egquilibrium (DFE)

The model (3) has a DFE, obtained by setting the right-hand sides of the equations in (3) to zero,

riven by

' DUS(e)=0

 D%E(t)=0

D" Elt) (5)
| D*I(t)=0

1 D“R(t)=0

a:@:EJxﬁL{iﬂ&n] (6)
\ J

Theorem 1. The DFE of E, 15 asymptotically stable (LAS) if R, < lL.andunstable if R, =1.

Reproductive number: The threshold result of this equilibrium is:

A
r=—., i
0
2 (B + ) 0
. ~5 {.H Tl taty)

The threshold epidemiological of those involved in disease, denoted by R, = p(FV '), where
o denotes the spectral radius, is given by
)
_(7)
HB+ )

Theorem 2. The DFE of model equation (2.1), given (2.9), are locally asymptotically stable

R, =

(LAS)ifR, < l,and unstable if R, >1.

The threshold quantity R is the basic reproduction number of the disease.
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Analysis of the Basic Reproduction Number R .

Sensitivity Analysis of Model Parameters

To recognize how best to lower fatality and misery due to the disease, it 15 vital to recognize the
implication of the diverse reasons accountable for the disease spread. Disease spread primarily
depends on the basic reproduction number R [12] Sensitivity of each parameter is examined
with respect to the basic reproduction numberR . In this way, the parameters that are more

sensitive to the disease transmission are identified. Furthermore, reducing or increasing such
parameters will as well reduce or increase the transmission of the disease. This detail is
imperative to experimental design, data assimilation and complex nonlinear model reduction
[13]. Table 1 gives description of parameters for CHDmodel.

Table 1 Description of parameters for CHD model

Parameter  Description Est. Value Ref
A Recruitment rate of CHD patients 50000 7
L Natural death rate 0.0057 5
r Risk factors (6 5
Ji] Rate of infection 0.005 7
a Loss of immunity 0.005 7
Y Recovery rate (.03 3
e Death due to infection 0.002 5

Sensitivity index of the basic reproduction number, R, with respect to each parameter is
computed as given in Table 2 for the model (3)

Definition 3. [12] The normalized forward sensitivity index of a variable with regard to a
parameter is the ratio of the relative change in the variable to the relative change in the

parameter. The sensitivity index perhaps on the other hand is represented with the partial
derivatives given by

i
oR
T'IRJ.. = 0 w ﬁm

24 Eﬁ.w R'ﬂ 1
Sensitivity indices of R

The sensitivity of R, each of the 19 different parameters described in Table 2 18 determined

using the basic reproduction number of model(3) as stated below
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0, = A
wulf+ pa)

Table 2 Sensitivity Indices of R

Table 2 Description of parameters for CHD model

Parameter  Est. Value Sensitivity
Index

i (1.005 4.58x10°

M 0.0057 -1.532

T 0.6 1.00

A 50000 1.00

Sensitivity index of the basic reproduction number,R, with respect to each parameter is
computed
The parameters on Table 2 are arranged in an ascending order starting from the most sensitive to

the least

Endemic equilibrium point (EEP)

Next, conditions for the existence of endemic equilibria for the model (3) are explored. Let
E =(s",E",I",R")

be the arbitrary endemic equilibrium of model (2), in which at least one of the infected
components of the model is non-zero. Setting the right-hand sides of the equations in (3) to zero

gives the following expressions.

S =Jﬁl -I_.Is'|I
r
B = [a +d+y+pu, Icﬁ'+;r ]ﬁ.l{_yz + uf, + rf'n.)
' r(,t.-1 ta+d+yru, + B +((@+8+y+u )8, +6(y+p, +a)u+B,(a+u, ]]
. 2 (8)

o @Bt +up +eh) o

T{/u'i —r{fz+f‘='+ ¥+, + 8, }.u: +{I[ar +d+ 7+ 4, )5, +E!'(;r'+]u” +u}}p+$,{cx +..ur_,}}
R™ 8 (u? + B, + A

Trlu e oyt g+ B + (@ S+ y+ 1y )By + 0y + gty +a )t + B, (e + p1,)

Furthermore, using Theorem 2 of [7] the following result is established.
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Non-negative solution

let R* ={xe R*,x20)

and

r) = (S(e ) E () o) R

Lemma: Let #(x)e CTa.b] and 2 W x)e [a.b] for 0<a<1. Then
Rlx) = hla) mf_-Irly_‘ Y hnYx—=a) ,with 0<n<x for x= (a,b]

Theorem 3. There 15 a unique solution for the initial value problem given by (3), and the

solution remains in &' .x=0.

Proof: Aim is to show that the domain R*,x = 0. is positively invariant. Since

D" ~"':"{'r]4.~.'|r|.u =A20,
D™ E(t) g0 = BS(OI(t)+ 71(1) 2 0,

(9)
D™ fr{:lm = IE(t)= 0,

D R(1) gy kEL1)2 0.

The non-negative solution satisfied the vector field point into R*

Numerical simulations

The simulations were carried out using the following values for initial conditions. The final time

was =100 days. Computations were run in Maple
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Figure 1 shows the effect of natural death in the disease transmission.
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Figure 2 shows the effect of risk factors in the disease transmission.
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Figure 3 shows the effect of recruitment rate in the disease transmission
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Figure 4 shows the effect of transmission rate in the disease transmission
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Conclusion

In this paper, a fractional order mathematical
model of the dynamics of disease was developed.
The epidemic thresholds and equilibria for the
model are determined and stabilities analyzed.
Results from the analysis of the basic
reproduction number propose that the sedentary
lifestyle, lack of physical activity, poor diet,

being overweight or obese, drinking alcohol,
high blood pressure, tobacco use denoted by will
contribute to increase in the disease. This result
recommends that, the control of the disease
should lie more on public health education.
Numerical simulations show the dynamics of the
transmission of disease using the basic
reproduction number.

References

Shao, C., Wang, J., Tian, J., & Tang, Y. D. (2020). Coronary artery disease: from mechanism to clinical
practice. Coronary Artery Disease: Therapeutics and Drug Discovery, 1-36.

Shahjehan, R. D., &Bhutta, B. S. (2020). Coronary artery disease. StatPearls [Internet].). Retried
on internet on 18" July 2022

Mayosi, B. M. (2007). Contemporary trends in the epidemiology and management of
cardiomyopathy and pericarditis in sub-Saharan Africa. Heart, 93(10), 1176-1183.

Huxley, R., Barzi, F., & Woodward, M. (2006). Excess risk of fatal coronary heart disease
associated with diabetes in men and women: meta-analysis of 37 prospective cohort studies.
Bmj, 332(7533), 73-78.

Ameen, |., Hidan, M., Mostefaoui, Z., & Ali, H. M. (2020). Fractional optimal control with fish
consumption to prevent the risk of coronary heart disease. Complexity, 2020.

Konig, A., Bouzan, C., Cohen, J. T., Connor, W. E., Kris-Etherton, P. M., Gray, G. M., ...&Teutsch,
S. M. (2005). A quantitative analysis of fish consumption and coronary heart disease
mortality. American jour

Mohamed Lamlili, E. N., Boutayeb, A., Moussi, A., Boutayeb, W., &Derouich, M. (2015). Fish
consumption impact on coronary heart disease mortality in Morocco: a mathematical model.
Applied Mathematical Sciences, 9(60), 2965-2975.

Lamlili, E. N., Boutayeb, A., Derouich, M., Boutayeb, W., &Moussi, A. (2016). Fish Consumption
Impact on Coronary Heart Disease Mortality in Morocco: A Mathematical Model with
Optimal Control. Engineering Letters, 24(3).

Oomen, C. M., Feskens, E. J., Raséanen, L., Fidanza, F., Nissinen, A. M., Menotti, A.,
...&Kromhout, D. (2000). Fish consumption and coronary heart disease mortality in
Finland, Italy, and The Netherlands. American Journal of Epidemiology, 151(10), 999-
1006.nal of preventive medicine, 29(4), 335-346.

Zhang, B., Xiong, K., Cai, J., & Ma, A. (2020). Fish consumption and coronary heart disease: A
meta-analysis. Nutrients, 12(8), 2278.

Mohamed Lamlili, E. N., Boutayeb, A., Moussi, A., Boutayeb, W., & Derouich, M. (2015). Fish
consumption impact on coronary heart disease mortality in Morocco: a mathematical model.
Applied Mathematical Sciences, 9(60), 2965-2975.

Chitnis, N., Hyman, J. M., & Cushing, J. M. (2008). Determining important parameters in the
spread of malaria through the sensitivity analysis of a mathematical model. Bulletin of
mathematical biology, 70(5), 1272-1296.

Powell, D. R.., Fair, J., Le Claire, R. J., Moore, L. M., & Thompson, D. (2005) Sensitivity analysis
of an infectious disease model, in Proceedings of the International System Dynamics
Conference, Boston, Mass, USA,

103



M.A.N. ABACUS

s (Mathematics Science Series)

ﬁ Abacu
\ol. 49, No 3, September. 2022

BLOCK STORMER-COWELL METHOD FOR SOLVING BRATU
EQUATIONS

Abstract

This work focuses on the numerical solution of Bratu equations, which is extremely helpful in studying
nonlinear systems. Block Stormer-Cowell-method (BSM) is proposed for the direct solution of Bratu
initial and boundary value problems using boundary value techniques. The method is implemented in a
block-by-block unification version which has unique advantages and is applied without restriction.
The method is formulated by adopting a collocation and interpolation technique with carefully
selected points within the integration interval. The stability property of the method revealed A (a)-
stability. The rate of convergence (ROC), efficiency and solution curves are presented separately to
show the proposed method's consistency, efficiency and accuracy advantages. The results show that
the method gives accurate solutions and is suitable for Brat equations' direct solution.

Keywords: Bratu Equation; Stormer-Cowell-method; Block unification; A (a)-stability.

Introduction

In this article, BSM is proposed for the
numerical solution of Bratu initial and Bratu
boundary value problems. According to ([1].

[2]. [3D),

written as

this all important equation can be

W+Ae" =0 0<x<]

(1)
Subject to
ul0)=u(1)=0.
which i1s considered to be boundary value

problem in  one dimensional coplanar

coordinate. For some obvious reasons,
researchers have devoted more efforts and tme
to the study of this type of equation. These
reasons might not be unconnected with the Tact
that the equation appears in wvarieties
applications which include physical, chemical

and engineering [2]. In specific term, one area

of

104

of application of this equation in physical
sciences can be found in thermal reaction [4]. It
can also be found in chemical application such
as nano-technology and fluild combustion.
According to [2], engineers apply the principle
of this equation in Nano-fibers and electro-
spinning. Further applications of Bratu-type
equation are discussed in (([3], [6]) and that of
Bratu's equation in [1], [2], [3], [4].).

In literature [3] and [6] presented algorithms
based on cubic spline for the solution of (1), [7]
studied the approximate solution of (1) using
the application of successive differentiation
[8] (1) by

variational iterative approach, while [2], [1], [4]

method, examined applying

in their separate work proposed algorithms that

employed major  ideal of  Adomian

decomposition. The work of Habtamu et al. [5]

titled “MNumerical solution of second-order

initial value problems of Bratu-type equation
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using higher-order Rungu-Kutta method”

adopted fifth-order one-step  Runge-Kutta
by [9]

madification, The desire to contribute to BSM

method  proposed with  little

is burmed out of the need for more numerical
methods for the Bratu-type and Bratu equation
solution without any restriction,

The BSM considered in this article is carefully
constructed to be able to tackle any equation
(1) because of its nonlinearity nature, BSM is a
difference method whose

multistep  finite

development depends on  constructing  a

continuous collocation scheme through which

the main and additional methods needed to

Mathematical Formulation of the Method

implement the BSM in mulustep block
unification are obtained [10]. The numerical
solutions obtained in this study are presented in
both 2D and 3D. We present the derivation of
the proposed method in the next section of this
paper with its implementation in block mode.
After that, the analysis of the proposed method
to establish the numerical stability, numerical
demonstrate  the efficiency

example to

advantages of the proposed method and
subsequently, the conclusion drawn on the
performance of the proposed method when

applied to solve the numerical examples.

The sole aim of this work is to derive the multistep collocation method of the form

iaf Ly, = 'S

Feld

iﬁr (2}, )

wherea (x)and £ (x)are coefficients that defined the method. This shall be achieved through the

interpolation and collocation of a polynomial

::{.t] = igﬂrt 1

3)

{which are continuously differentiable) on equi-distant mesh points { X; '; . We set r+ 5 to be equal to

¢l s0 as to be able to dulcmﬁnu{ @ } uniquely. We interpolate u( x)and collocate «"( x)at the points

X !

i TN |

i

to obtain the following equations
u{_.r,,_._}:un_ » (f=k=2,k-1)

u'(x,,,) (/=0(1)k)

¥ -

e

S

(4)

(5)

Note that w,, and f,,  are interpolation and collocation data u(x)and «"(x)on {.‘rn_ } respectively.

In the light of [ ], equations (4) and (5) can be expressed in matrix-vector form as:

Ve (6)

where o - square matrix V', the p—vectors ¢ and u are defined as follows
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= [P Pa] s ;
V= sl & 8= 00 b pn Bl Fa (N
P, P::]J (4,9, ) (. k-1 1 0)

Here, ¥ are partition into p,,, P, Pay. Py SQuare matrices whose entries are generated from
equation (4) and (5). We obtain a closed form of (6) by considering the inverse of the Vandermonde
matrix ¥ that is

¢ =Mu (8)
where V=M
We note that after the simplification of (8) and (3) equivalent continuous forms written as
k
u(X)=ay (x)uy oy +op  (x)u, +B Y B(x)f,,, r=0(1)k 9)
r=0
o (2)="Lu(¥) (10)
dx

where k is the step number, &, ,,, , and B (x) are continuous coefficients are obtained. The

continuous forms (9) and (10) are then used to generate the discrete and additional first derivative

methods for the numerical solution of (1).

Specification of the method
The proposed method 1s specified by following the procedure discussed in section two above,

choosing £ =5 and the matrix v in (6) as defined in (7) contained the following matrix partitions

1 x, "'j ; xj+3 "': A 3":+ 3 Xe: 3 _1':_ 3
P, = 1 x4 *"fu -"—jq B *T:.41 'Tsf|4‘ -'::I;44 xjuﬁ
0 0 2 X, - 12x; 20x, 30x; 42x
0 0 2 X Bas, 20 30a, 42,
0 0 =, 1252, 20x,, 30x), 42x,
5, = 0 x. | i 12.'.‘;+ 3 201‘;}*_‘ 30.!:;_; 423":*;
: 0 2 Xy w12, 20x 301:_ i 42_\'3I ;
00 2 %, 12x0 20x. 30x, 42%.

Inverting the matrix V once, using computer algebra, for example, Maple or Matlab software

package, give rise to the following continuous scheme

“rn-.‘* = a"“rr—" + al-}“u-i--‘l + h: ([})[]-f’.l.l + !}’I -}(.:J‘ | + ﬂ:-’{;r—l + 133-’.:H 3 + I“}-LI(;;H--I + f)’."r-f;l-l-:" ] (I 1 ]
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Where
a,=4-N ]
a,=N-3
h*(-2N" +42N°—357N° +1575N* — 3836 N’ + S040N" —3176N +672)
o 10080 )
B (TONT —196N"+1491N" — 5390N"* + 8400N" —14059N +10668)
b= 10080
_ B (—10N7 + 182N —1239N7 + 3745N" —4200N° — 3140N + 9744 F 12)
5040
B (10N —168N°+1029N" —2730N" + 2800N" — 5813V +13524)
i 5040
W (=10N7 +154N° ~861N" +2135N" = 2100N" — 32N + 2688
i 10080
A (2N7—28N° +147N° —350N" + 336 N* 107N - 84)
by = 10080 J
The first derivative of (11) yields
Mg = ﬁ{ﬁr;”ﬂ-i + @b+ (B S, A Bl ¥ oS+ Bsf s+ Bufia+ Bl s }}
(13)
where
a, =1 |
a,=1
~ h[—14N°+252N7 —1785N% + 6300N" —11508N" + 10080N —3176)
fo* 10080
h(TON® —1176N° + 7455N" - 21560N° + 25200N7 —14059)
= 10080
e h(~TON® +1092N° — 6195N* +14980N" — 12600N° —3140) P i)
o 5040
A{TON® —1008N° +5145N* ~10920N " +8400N® - 5813)
B 5040
h(=TON® +924N° — 4305N" +8540N" — 6300N* - 32)
e 10080
. h(14N*—168N" + 735N —1400N" +1008N" —107)
e 10080

107



Abacus (Mathematics Science Series)
\ol. 49, No 3, September. 2022

M.A.N. ABACUS

Equations (11) and (13) are evaluated at N={0,1,2,5}and N ={0,1,2,3,4,5} respectively. Solving

the resulting equations simultaneously and writing explicitly yields the following BSM

|

=u +u +

U
n+l n " IGOSU'

(24621, +4315f, ,—3044 1, ,+1882f, ,—682f , +107f...)

n+2

U, ,=u +2u + %(355_[;f +1088f . -370f ,+272f .—101f .+ lﬁfm}
O

n+2

34 _ .
U .=u +3u +——(328f +1167
f”+ 3 n n -I I 2()( .JrH f‘

n+l

-24f ,+290f .. =961 . +15f..;)

n+2

3
U, =u, +4 +?h5(4?f +2(89f  +11f +38F s —5F .+ M}J

U, =u, +5u + 25K (I22j +475f,,,+100f, ,+250f ,+50f, ,+11f ;)
G % (15)
W= +I—(4?5;‘ +1427f,,,—798f.,, +482f, ., 1731 ,+27f,.¢)
1440 '
h . ; i
i, =u +9—L[ 281, +129f, 14, ,+14f, . ~6f. .+ [..5)
, . 3h ; ;
”ul‘ _“rr+-lﬁ(]?-f 73lull+18fu| +”8}’H k] ?-lffrl4+-'frl-5)
i PR o . : : ;
”.l.ll-l- = “l'l +4_(?IJ'I +32-fﬂ'| iy Iz-frllﬁ +32../”.-3 +7-ffl"4}
Sh . ;
w,o=u + E{]‘” +75f, 450, +50f 3 +75f,,,+19f,.5) |
Analysis of the BSM
The proposed BSM is given by the block matrix equation
A", = A", +i*(B"F, ,+B"F,) (16)

Where u=1,....N—1, A", B are 10x 10square matrix whose entries are the coefficients of (15).

A"is an identity matrix. The vectors U,,U, |, F, jand F, are defined as follows

lul

: SR ’ '
L K (“rr-t*”rr-i"“* h“ul" h”.lu-l “““ h”u}i )

M

= . . . - o4 S
FJ.- _(.fn—l*.'{u+3?""’ .fue-_“ ;!f.-.ul* ;!f.'.w:‘,"”‘ }'.lfua.-i )
T s ' ] ] ' '
{"' | _[u” |'-‘Mﬂ 1"”.'.' _-UH” 4"”!.' 4 *uu’h“u I"’,”",n 2""!”".” 3";”""" 4 "h“rr)

ot

IE_;F 1 =(f,.,. !".frll _""‘.f.:.l 5‘."1.:: -4 5’{.'"!”{1: I"f!f.l: Zﬂhf: ?"'h/n' 4.}1';’:)
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where v, V. . f [ .i=1(1)4are used to extend the zero entries of the vector notation see [10],

[12] and [13]

Local Truncation error and order

With the BSM (16), we associate the linear difference operator L defined by

L[T(x):h]=A"T,,,+| 4"T, +n*B"F, + *B"F,, | (17)
Where U, =U, U, =U, . ,F, =F, ,and F,  =F, . Also u,, =u(x,tj), fo, = f{.r"‘..u"h.}
and y! =v"(x,+jh), a=0(1)N . Expanding the test function y(x+ jh)and its derivatives

¥ (x+ jh),y"(x+ jh)as Taylor series about x, and collecting term in (17) gives the following
local truncation error:

L({{J_] : J'r] =eU(x)+ch0' (x)+..+c,h"U (x)+... (18)
where ¢,.a=10.1,... are constant coefficients.
Definition: The block method (17) has algebraic order at least p=1 provided there exists a
constant ¢__, =0 such that the local truncation error E_satisfies ||.r';I ||:¢.'._,_:J'r"': +1:![.F:r""]}~ where
|| the maximum norm [10] is.

Remarks:

a The local truncation error constants e of BSM (16) as defined by (18) are respectively

.__[ 199 19 141 8 1375 863 37 29 8 275 Y
: 24192 945 4480 189 244192 60480 37RO 2240 945 12096 ,

where ¢, =¢, =,...,¢c; =0
b We observed that the order of BSM (18) as obtained from the computation of the local
truncation error constants are uniformly (6,6,6,6,6.6.6.6,6,6 }? [11],[12], [13].

Stability of the method
The linear stability of BSM is gotten by applying (18) to test equation ' = A°ywhere 4 is a real

constant. Let vbe equal to id, the application of (18) to the test equation gives

U, = -:-{_:1 }U” ;

0(z3)=(4'+8") (4'-B") (19)
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Here (:}{:3']1'5 called the amplification matrix and its determines the stability of the method. The

stability polynomial for the BSM is gotten as
' 3 4 5 3 - 4 2 a i
.l;l[ [2007=" + 2962z = 202" + 3110pz" = 2587z < 189005z + 34007 + 75600p=z - 126002 = 15120087 + IhllfH}}

3 2

,.-:-[:,f.: s i
J[!:IHP:' + 1481z 1535527 — 9450z —.‘-?H[HJ:‘—'-'FFIU[P]

The Region of Absolute Stability (RAS) of the method is plotted using the root locus technique.

The RAS is as shown the figure 1 below

|  Unstable region

Figure 1: Region of absolute stability of the BSM
Implementation of BSM
Boundary Value Technique is adopted for implementing method (18) via a written code in Wolfram
Software called Mathematical version 11.3. The block by block procedures are as itemized below
1 Choose N such that h=(x, —x,). on the partition 0,
: By adopting (15), m=0,v=35, generate the wvariables (_1',,_l.':,_'r_.ﬁ,_L--_“_L-_;}II and

[} [ L} [

; T :
(V¥ 150,04 ) the interval [_1:”..\'_. ]Hml store
. T p ponT
3 For n=1v=2 generate the variables( v,, v., ¥, vy. ¥,g ) and ( 34,35, 3. %, ¥, ) on the sub-
interval [ x,,x,, Jand store

4 Continuing the procedure forn=2....,N—land v=3,..., Nuntil all the variables on the sub-

mtervals [ x,, x. ].[ ¥, %, ][ €y, %y ] are obtained.

(7, ]

Combine as a single block matrix equation all the block generated in steps 2 and 3 on ¢J,
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6 Solve simultaneously the single block matrix equation to obtain all the solution of (1) on the

entire interval [ x,, x|
Numerical Experiment

In this section, our efforts shall be directed towards employing BSM as discussed above to obtain
the numerical solution of some of Bratu’s equations. In order to justify the efficiency and

applicability of the presented method, Maximum errors are defined by

Max Error =Max ||LI -Ufx,,, }" {(20)

where U, and U(x, , )are the numerical and exact values of U at points iin the collocation

interval of points

. ||":I—|:.'|
| x,=a,..,x, =a+(i-1)h,...,.x, =b}, for h=

21
{ = (21)

The rate of convergence (ROC) is calculated using the formula
Err2h
Errh J

ROC = lug:[

Errh 1s the maximum error obtained using the step size A . In general, it is shown that the
computed ROC is higher but consistent with the theoretical order 6 of the BSM.

Application of BSM to solve Bratu Equations
We first considered classical nonlinear Bratu boundary value problem in one-dimensional planar

coordinates given as

-u"(x)=4e", D<x< ]|1

(22)
u(0)=u(1)=0 I
The Exact solution to (22) is given in [8], [5]. [6]. [2]. [3]. [7]. as
[ W 6\l
cosh 5 4
u(x)=-2In —— (23)

B
msh[&ij
4 )

bt
where @ satisfies & =24 L‘ush(% J

LY
There are three possible solutions considering the value of A viz;
1 If A=A, then the Bratu problem has zero solution.

2 If A=4_, then the Bratu problem has one solution.

3 If A <A, then the Bratu problem has two solutions.

where the critical value A satisfies the equation.

7
4=,[24 F.inh%‘, A =3513830719
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We first considered the solution of (22) for which 4 is equal to 1. The solution

curves are as presented in figures 2 and 3 respectively.

— Exact

= Approx

(a} 2D solution curve of Bratu eqution with A= 1 as compared with the exact solution.

(b) 3D view of exact in figure {a) (c) 3D view of approximate value in figure {a)

= YWalue — P
— YExact — BsM

(a) 2D solution curve of Bratu eqution with A= 2 as compared with(b) Efficiency curve of BSM
with A= 2 as compared with that of

the exact solution. OPp.
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(c) 3D view of exact in figure (a) (d) 3D view of approximate value mn figure (a)

Application of BSM to solve Bratu-Type Equations

Here, Bratu-type initial value problem of the form
n”{.r} =2¢", O0<x<]
u(0)=u'{0)=0. |

is considered to further demonstrate the efficiency of the proposed method.

(24)

Table 1: The Maximum error and ROC of BSM with A= 1, 2 and that of OP with 2= 2 in [6]

N  Max Emor(i=1) ROC Max Error{2=2) ROC Maxi Error in ROC of OP in

[6] [6]
10 2.21822x10°" 6.5722x1077 2.64(-6)
20 413283x10°10 574613 1.36604x10° 55883 1.64(-T) 4
40 ge8043x10712 595105 206726x1071"  6.04614 1.01(-8) 4
80 106137<107"" 397394 2.99544x107'¢  6.10881 6.31(-10) 4
160 1.69309=1077 597013 445755 =107 6.07037  3.94(-11) 4

— Exact

« Approx

(a) 2D solution curve of Bratu eqution with A = 3.513830719 as compared with the exact

e
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solution.

it} 3D view of exact in figure (a) (c) 3D view of approximate value in figure (a)

— Exact \
« Apgrox
» Adommial | \

(a) Numerical, Exact and Adomial solution of the Bratu-type IVP (b) Efficiency curve for Bratu
equation with A= 1

Figure 2

Conclusion

This study has investigated the numerical solution of Bratu and Bratu-type problems by
constructing a block

Stomer-Cowell method. The stability study of the proposed method shows A(e) -stable with

a = 71", Numerical results of the problems under study are presented in 2D and 3D, respectively.
Efficient curves for A equal to 1 and 2 are presented to show the computational advantage of the
proposed method. The convergence rate was obtained for Bratu-equation for various values of 4,
and the results show that the method is consistent with the theoretical order. Our future work will

present the BSM hybrid type for the numerical solution of second-order Bratu equations,
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